【Python】Leetcode 240. 搜索二维矩阵 II - 削减矩阵+递归,击败88%

描述

  1. 搜索二维矩阵 II

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。

该矩阵具有以下特性:

每行的元素从左到右升序排列。

每列的元素从上到下升序排列。

思路

确定左右及上下限,削减矩阵,递归。

注意判断四个端点是否等于target,若有满足的返回true,否则判断左上角端点或右下角端点是否大于或小于target,满足则返回false,否则递归直到上下限溢出返回false。

可以证明,在以上判断条件下,每次递归都会导致矩阵被削减,时间复杂度为O(m+n)

复杂度

时间复杂度:

O(m+n)

空间复杂度:

O(1)

`class Solution:

def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:

l = 0

r = len(matrix[0])-1

t = 0

b = len(matrix)-1

return self.dfs(matrix,l,r,t,b,target)

复制代码
def dfs(self,matrix,l,r,t,b,target):
    print(l,r,t,b)
    if(r<l or b<t): return False
    if(matrix[t][l] == target or matrix[b][r] == target or matrix[t][r] == target or matrix[b][l] == target): return True
    if(matrix[t][l] > target): return False
    if(matrix[b][r] < target): return False
    n_r = r
    for i in range(r-l+1):
        if(matrix[t][r-i] <= target):
            n_r = r-i
            break
    
    n_l = l
    for i in range(r-l+1):
        if(matrix[b][l+i] >= target):
            n_l = l+i
            break
    
    n_b = b
    for i in range(b-t+1):
        if(matrix[b-i][l] <= target):
            n_b = b-i
            break
    
    n_t = t
    for i in range(b-t+1):
        if(matrix[t+i][r] >= target):
            n_t = t+i
            break

    return self.dfs(matrix,n_l,n_r,n_t,n_b,target)`
相关推荐
databook17 小时前
Manim实现闪光轨迹特效
后端·python·动效
Juchecar18 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户83562907805118 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_18 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
数据智能老司机1 天前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机1 天前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机1 天前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机1 天前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i1 天前
drf初步梳理
python·django
每日AI新事件1 天前
python的异步函数
python