AI基础知识(3)--神经网络,支持向量机,贝叶斯分类器

1.什么是误差逆传播算法(error BackPropagation,简称BP)?

是一种神经网络学习算法。BP是一个迭代学习算法 ,在迭代的每一轮使用广义的感知机学习规则对参数进行更新估计。基于梯度下降(gradient descent) 策略,以目标的负方向对参数进行更新。BP的算法工作流程 大致是:先将输入样本输入给输入层神经元,再将误差逆向传播至隐层神经元最后根据隐层神经元的误差来对连接权(connection weight)和阈值(threshold)进行调整,该过程迭代调整,直到训练误差达到一个很小的值。

2.如何解决误差函数中参数寻优陷入局部极小的问题?

(1)以多组不同的值初始化多个神经网络,按标准方法训练之后,取其中误差最小的解作为参数。这相当于从不同的初始点开始搜索,这样就可能陷入不同的局部最小。

(2)使用**"模拟退火"(simulated annealing)技术**,模拟退火每一步都在以一定的概率接受比当前更差的结果,从而有助于"跳出"局部极小。

(3)使用随机梯度下降,与标准梯度下降计算机误差精度不同,随机梯度下在计算梯度时加入了随机因素,即使陷入局部极小点,它计算出的梯度仍可能不为0,这样就有机会跳出局部极小。

3.什么是预训练(pre-training)?

由于多隐层神经网络在多隐层逆传播时,往往会"发散"(diverse)而不能收敛到稳定状态,**所以采用预训练方法,训练时将上一层隐结点的输出作为输入,而本层隐结点的输出作为下一层隐结点的输入。**在预训练结束后,再对整个网络进行微调(fine-tuning)。

4.什么是支持向量机(support vector machine)?

首先解释支持向量(support vector),是指距离超平面,最近的几个点使得下面公式的等号成立,他们被称为"支持向量"。

两个异类支持向量到超平面的距离称为间隔(margin),欲找到具有"最大间隔"(maximum margin)的划分超平面,也就是找到能满足上面约束条件的参数w和b,使得margin最大,这就是支持向量机(SVM)的基本型:对于二分类问题,找到一个超平面,使得margin最大。

相关推荐
IT_陈寒8 分钟前
React性能优化:这5个Hook技巧让我的组件渲染效率提升50%(附代码对比)
前端·人工智能·后端
Captaincc10 分钟前
9 月 20 日,TRAE Meetup@Guangzhou 相聚羊城
人工智能·后端
霍格沃兹软件测试开发24 分钟前
快速掌握Dify+Chrome MCP:打造网页操控AI助手
人工智能·chrome·dify·mcp
张子夜 iiii34 分钟前
4步OpenCV-----扫秒身份证号
人工智能·python·opencv·计算机视觉
华新嘉华DTC创新营销2 小时前
华新嘉华:AI搜索优化重塑本地生活行业:智能推荐正取代“关键词匹配”
人工智能·百度·生活
SmartBrain4 小时前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t5 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华6 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu7 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师7 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js