Redis - 缓存访问 & 缓存穿透 & 缓存击穿 & 缓存雪崩

一、缓存访问

1、客户端发送请求

2、服务首先会请求 redis,查看请求的内容是否存在

3、redis 将请求结果返回给服务,如果返回的结果有数据则直接返回给客户端;如果没有数据则会继续往下执行

4、服务从数据库中查询请求的数据

5、数据库将查询的结果返回给服务

6、如果数据库有返回数据,则将返回的结果添加到 redis

7、将请求到的数据返回给客户端

二、缓存穿透

通过接口访问一个缓存和数据库都不存在的数据。

因为服务出于容错考虑,当请求从持久层查不到数据则不写入缓存,这将导致请求这个不存在的数据每次都要到持久层去查询,失去了缓存的意义。

此时,缓存起不到保护后端持久层的意义,就像被穿透了一样。导致数据库存在被打挂的风险。

解决办法

1、接口请求参数的校验。对请求的接口进行鉴权,数据合法性的校验等;比如查询的 userId 不能是负值或者包含非法字符等。

2、当数据库返回空值时,将空值缓存到 redis,并设置合理的过期时间。

3、布隆过滤器。使用布隆过滤器存储所有可能访问的 key,不存在的 key 直接被过滤,存在的 key 则再进一步查询缓存和数据库。(布隆过滤器存在一定误判情况:当判断不存在时一定不存在,当判断存在时极小可能不存在)

三、缓存击穿

某个热点 key,在缓存过期的一瞬间,同时有大量的请求打进来,由于此时缓存过期了,所以请求最终都会走到数据库,造成瞬时数据库请求量大、压力骤增,导致数据库存在被打挂的风险。

解决办法

1、加互斥锁。当热点 key 过期后,大量的请求涌入时,只有第一个请求能获取锁并阻塞,此时该请求查询数据库,并将查询结果写入 redis 后释放锁。后续的请求直接走缓存。

2、设置缓存不过期或者后台有线程一直给热点数据续期。

四、缓存雪崩

大量的热点数据过期时间相同,导致数据在同一时刻集体失效。造成瞬时数据库请求量大、压力骤增,引起雪崩,导致数据库存在被打挂的风险。

解决办法

1、将热点数据的过期时间打散。给热点数据设置过期时间时加个随机值。

2、加互斥锁。当热点 key 过期后,大量的请求涌入时,只有第一个请求能获取锁并阻塞,此时该请求查询数据库,并将查询结果写入 redis 后释放锁。后续的请求直接走缓存。

3、设置缓存不过期或者后台有线程一直给热点数据续期。

相关推荐
成富1 分钟前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
songqq272 分钟前
SQL题:使用hive查询各类型专利top 10申请人,以及对应的专利申请数
数据库·sql
计算机学长felix6 分钟前
基于SpringBoot的“校园交友网站”的设计与实现(源码+数据库+文档+PPT)
数据库·spring boot·毕业设计·交友
王佑辉21 分钟前
【redis】redis缓存和数据库保证一致性的方案
redis·面试
小码的头发丝、1 小时前
Django中ListView 和 DetailView类的区别
数据库·python·django
Karoku0661 小时前
【企业级分布式系统】Zabbix监控系统与部署安装
运维·服务器·数据库·redis·mysql·zabbix
材料苦逼不会梦到计算机白富美1 小时前
golang分布式缓存项目 Day 1
分布式·缓存·golang
gorgor在码农1 小时前
Redis 热key总结
java·redis·热key
想进大厂的小王1 小时前
项目架构介绍以及Spring cloud、redis、mq 等组件的基本认识
redis·分布式·后端·spring cloud·微服务·架构
Java 第一深情1 小时前
高性能分布式缓存Redis-数据管理与性能提升之道
redis·分布式·缓存