论文阅读——RingMo

RingMo: A Remote Sensing Foundation Model With Masked Image Modeling

与自然场景相比,RS图像存在以下困难。

1)分辨率和方位范围大:受遥感传感器的影响,图像具有多种空间分辨率。此外,与自然图像的实例通常由于重力而具有固定方向不同,遥感图像中的物体从鸟瞰角度来看具有很大的角度分布范围。因此,由于尺度和角度的多样性,同一物体在不同的RS图像中具有不同的特征。

2)许多密集和小物体:大部分自然图像包含少量物体。例如,ImageNet 数据集每个图像平均包含少于三个对象实例 [33]。如图1所示,遥感图像通常大而宽,覆盖数百公里。 RS图像中存在许多小物体,而且它们通常分布较密集,这在一定程度上影响了物体级解释的精度。

3)背景复杂:由于RS图像包含较大的场景,除了感兴趣的物体外,图像还包含大量的背景信息,导致图像的信噪比较低。物体的边界和背景模糊,干扰物体分类。而且遥感图像容易受到天气、光线、云、雾等外界因素的干扰,影响成像质量。

本文的贡献可以概括为四个方面。

1)我们提出RS领域第一个生成式自监督基础模型框架(RingMo)。该框架利用大量遥感数据来获取一般特征表示并提高各种遥感解释任务的准确性。

2)为了增强基础模型对遥感数据的处理能力,我们根据遥感图像的特性设计了一种自监督方法,改善了之前的掩模策略可能忽略复杂遥感场景中密集和小物体的情况。

3)在没有任何人类监督的情况下,我们收集了包含 200 万张图像的 RS 数据集,这些图像是从卫星和空中平台捕获的,涵盖六大洲的不同物体和场景。这种包含大量且多样化的遥感图像的数据集提高了基础模型对不同场景的适应性。

  1. 在收集的数据集上使用 RingMo 训练方法推导基础模型后,我们在四个典型的 RS 任务上对其进行微调。实验表明,我们的方法在八个下游数据集上实现了 SOTA,并验证了我们的 RS 基础模型在各种应用上的有效性和泛化性。

模型:

PIMask Strategy:

如图 4 中左侧红色补丁所示,我们没有完全屏蔽图像补丁,而是随机保留屏蔽补丁中的一些像素。采用这种掩模策略,可以有效保留小目标的部分像素信息。就像图 4 中的蓝色补丁所示,我们增加了掩模补丁的数量以保持总掩模比率不变。此外,为了更好地利用这些保留像素,采用多层卷积来实现块嵌入。一些相关研究人员通过实验证明,在ViT中添加早期卷积层可以帮助模型更好地学习图像特征[67]。具体来说,在卷积过程中,我们让卷积核只在每个patch内部计算,这不能打破模型的mask约束。与传统的嵌入结果不同,多层卷积后的所有标记都具有特征信息,这进一步提高了编码器的学习效率。

相关推荐
wwlsm_zql16 小时前
江西移动5G赋能:电力行业智能化革新探秘
人工智能·5g
ChatPPT_YOO17 小时前
告别手搓PPT:实测四款免费AI生成工具
人工智能·信息可视化·powerpoint·ai生成ppt·ppt制作
caiyueloveclamp17 小时前
便宜好用AIPPT推荐TOP8【2025最新】
大数据·人工智能·powerpoint·ai生成ppt·aippt·免费会员
CHENKONG_CK17 小时前
RFID 技术赋能汽车制造:发动机气缸缸体生产线智能化升级案例
人工智能·生产制造·rfid
葡萄城技术团队18 小时前
实战视角:为何专用小型语言模型(SLM)正成为企业 AI 选型新宠—与 LLM 的全面对比指南
大数据·人工智能·语言模型
AndrewHZ18 小时前
【图像处理基石】老照片修复入门:用技术唤醒沉睡的回忆
图像处理·人工智能·opencv·计算机视觉·cv·图像修复
AI_Auto18 小时前
MES系列-制造流程数字化的实现
大数据·人工智能·自动化·制造·数字化
DolphinDB智臾科技18 小时前
DolphinDB × 浙江大学合作新课——量化金融:理论与应用
人工智能·金融·浙江大学·量化金融·dolphindb
老赵聊算法、大模型备案18 小时前
广西 “人工智能 + 制造” 政策科普:十大支持方向与补贴明细
人工智能·aigc·制造
格林威18 小时前
AOI在PCB制造领域的核心应用
人工智能·数码相机·计算机视觉·视觉检测·制造·pcb·aoi