第五十八回 吴用赚金铃吊挂 宋江闹西岳华山-飞桨图像分割套件PaddleSeg初探

鲁智深被贺太守抓住,押入死牢。武松得信后,正想回梁山报信,正好戴宗来了,就请戴宗赶快回梁山搬救兵。宋江说兄弟有难,怎能不救? 于是带了十六个头领来到少华山。

因为华州城池厚壮,宋江等无计可施。正一筹莫展之际,恰逢一个宿太尉领御赐金玲吊挂来西岳华山降香,宋江就"请"太尉上山,并"借"了太尉一身行头。

宋江等假扮太尉,把贺太守骗出城来,杀掉。然后杀入华州,救出了史进和鲁智深。最后又把御香、金玲等物都还给了宿太尉。

少华山四人也都加入了梁山。

宋江继续引人入伙,AI轮到图像分割。

飞桨图像分割套件PaddleSeg初探

PaddleSeg是基于飞桨PaddlePaddle的端到端图像分割套件,内置45+模型算法及140+预训练模型,支持配置化驱动和API调用开发方式,打通数据标注、模型开发、训练、压缩、部署的全流程,提供语义分割、交互式分割、Matting、全景分割四大分割能力,助力算法在医疗、工业、遥感、娱乐等场景落地应用。

PaddleSeg环境安装

源码安装PaddleSeg

# 从Github下载PaddleSeg代码。

git clone https://github.com/PaddlePaddle/PaddleSeg

下载源码之后编译安装

cd PaddleSeg
pip install -r requirements.txt
pip install -v -e .

也可以

使用pip安装

pip install paddleseg

确认环境安装成功

在PaddleSeg目录下执行如下命令,会进行简单的单卡预测。查看执行输出的log,没有报错,则验证安装成功。

sh tests/install/check_predict.sh

PaddleSeg快速入门示例

使用眼底分割作为示例进行演示,实际应用中,可以根据自身的业务需求和场景进行相应的调整与适配。数据集可以用自己的,模型也可以选配其它的。

参考:https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.9/docs/whole_process_cn.md

准备数据

本示例将采用视盘分割(optic disc segmentation)数据集进行演示。数据集的原始图像和对应的分割效果图如下所展示。

使用如下命令下载数据集

mkdir data
cd data
wget https://paddleseg.bj.bcebos.com/dataset/optic_disc_seg.zip
unzip optic_disc_seg.zip
cd ..

准备配置文件

在PaddleSeg中,我们常用配置化驱动的方式来进行开发,配置文件是模型训练、评估、预测和部署的关键所在。

配置文件中详细定义了分割模型、损失函数、训练超参数、训练数据集以及验证数据集等信息。

本示例使用的配置文件位于:PaddleSeg/configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml

模型训练

在PaddleSeg的根目录下,执行以下命令来启动单机训练。

bash 复制代码
python tools/train.py \
       --config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml \
       --save_interval 500 \
       --do_eval \
       --use_vdl \
       --save_dir output

训练完成后,模型在验证集上的mIoU可能达到90.65%(具体数值可能会有所变动),精度最高的模型权重将保存在PaddleSeg/output/best_model目录下。

模型评估

在PaddleSeg根目录下,执行以下命令,使用val.py脚本来评估模型的精度,即计算验证数据集的精度。

bash 复制代码
python tools/val.py \  
       --config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml \  
       --model_path output/best_model/model.pdparams

模型预测

在PaddleSeg根目录下,执行以下命令,使用predict.py脚本加载训练好的模型,对图像进行预测,并保存预测结果。

bash 复制代码
python tools/predict.py \  

       --config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml \  

       --model_path output/best_model/model.pdparams \  

       --image_path data/optic_disc_seg/JPEGImages/H0002.jpg \  

       --save_dir output/result

预测完成后,可以在PaddleSeg/output/result目录下查看预测结果,具体图像如下所示。

一天,旱地忽律朱贵上报,说徐州沛县芒砀山有一伙儿强人,三人叫混世魔王樊瑞,八臂哪吒项充和飞天大胜李衮,号称要吞并梁山泊。宋江正要下山,九纹龙史进说我们四个去就行了。

史进四人与樊瑞三人一交手,就落了下风,多亏小李广花荣和金枪手徐宁随后就过来帮忙。第二天,宋江亲自带着大队人马赶到。

公孙胜说他们会妖法,我用一个阵法来抓他们。

欲知后事如何,且听下回分解。

相关推荐
编码浪子9 分钟前
Transformer的编码机制
人工智能·深度学习·transformer
IE0623 分钟前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习
GIS数据转换器27 分钟前
城市生命线安全保障:技术应用与策略创新
大数据·人工智能·安全·3d·智慧城市
一水鉴天2 小时前
为AI聊天工具添加一个知识系统 之65 详细设计 之6 变形机器人及伺服跟随
人工智能
m0_743106465 小时前
【论文笔记】MV-DUSt3R+:两秒重建一个3D场景
论文阅读·深度学习·计算机视觉·3d·几何学
m0_743106465 小时前
【论文笔记】TranSplat:深度refine的camera-required可泛化稀疏方法
论文阅读·深度学习·计算机视觉·3d·几何学
井底哇哇8 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证8 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩8 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控8 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉