xinference - 大模型分布式推理框架

文章目录


关于 xinference

Xorbits Inference(Xinference)是一个性能强大且功能全面的分布式推理框架。

可用于大语言模型(LLM),语音识别模型,多模态模型等各种模型的推理。

通过 Xorbits Inference,你可以轻松地一键部署你自己的模型或内置的前沿开源模型。

无论你是研究者,开发者,或是数据科学家,都可以通过 Xorbits Inference 与最前沿的 AI 模型,发掘更多可能。


使用

1、启动 xinference

shell 复制代码
xinference-local -H 0.0.0.0 -p 8094

设置其他参数

Xinference 也允许从其他模型托管平台下载模型。可以通过在拉起 Xinference 时指定环境变量,比如,如果想要从 ModelScope 中下载模型,可以使用如下命令:

shell 复制代码
XINFERENCE_MODEL_SRC=modelscope xinference-local --host 0.0.0.0 --port  8094  

xinference 缓存地址:~/.xinference/cache

模型缓存地址,我使用 modelscope 下载模型,被缓存到 ~/.cache/modelscope/hub/qwen/Qwen-7B-Chat


2、加载模型

搜索,点击 chat model 设置参数,然后点击 飞机 来加载模型



如果你的第1个cuda 被占用,又设置 N-GPU 为 auto,可能会报如下错误

Server error: 400 - [address=0.0.0.0:46785, pid=12000] Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in 32-bit, you need to set load_in_8bit_fp32_cpu_offload=True and pass a custom device_map to from_pretrained. Check https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu for more details.

将 N-GPU 设置为 可用的cuda 就好



可以在 Running Models 中看到刚调起来的模型


3、模型交互

没有交互的 UI 界面,你可以使用代码进行交互

以下代码来自:https://inference.readthedocs.io/zh-cn/latest/index.html

python 复制代码
client = Client("http://localhost:8094")
model = client.get_model("qwen-chat") # 填入上面的 model id
# <xinference.client.restful.restful_client.RESTfulChatModelHandle object at 0x7f203fb8e050>


# Chat to LLM
model.chat(
   prompt="What is the largest animal?",
   system_prompt="You are a helpful assistant",
   generate_config={"max_tokens": 1024}
)

得到:

json 复制代码
{
	'id': 'chat744c3bf4-e5e3-11ee-8014-ac1f6b206f62',
	'object': 'chat.completion',
	'created': 1710847556,
	'model': 'qwen-chat',
	'choices': [{
		'index': 0,
		'message': {
			'role': 'assistant',
			'content': 'The largest animal on Earth is the blue whale, which can grow up to 100 feet (30 meters) in length and weigh as much as 200 tons (90 metric tonnes). It has the biggest brain of any living creature, with an estimated volume of around 70 cubic feet (26 liters). The blue whale also has one of the strongest voices in the world, capable of producing a loud noise that can be heard over 5 miles (8 kilometers) away.'
		},
		'finish_reason': 'stop'
	}],
	'usage': {
		'prompt_tokens': 24,
		'completion_tokens': 103,
		'total_tokens': 127
	}
}

其它

报错处理 - transformer.wte.weight

KeyError: [address=0.0.0.0:41435, pid=40327] 'transformer.wte.weight'

如果出现这个错误,可以检查下 cuda 是否能正常被 torch 调用:

shell 复制代码
 python -c "import torch; print(torch.cuda.is_available())"

伊织 2024-03-19(二)

相关推荐
喜欢吃豆6 分钟前
使用 OpenAI Responses API 构建生产级应用的终极指南—— 状态、流式、异步与文件处理
网络·人工智能·自然语言处理·大模型
m***l1151 小时前
集成RabbitMQ+MQ常用操作
分布式·rabbitmq
拾忆,想起2 小时前
Dubbo分组(Group)使用指南:实现服务接口的多版本管理与环境隔离
分布式·微服务·性能优化·架构·dubbo
回家路上绕了弯3 小时前
彻底解决超卖问题:从单体到分布式的全场景技术方案
分布式·后端
拾忆,想起4 小时前
Dubbo动态配置实时生效全攻略:零停机实现配置热更新
分布式·微服务·性能优化·架构·dubbo
楚国的小隐士17 小时前
Qwen是“源神”?实际上GLM-4.6才是被低估的黑马
ai·大模型·通义千问·智谱清言
每天进步一点_JL18 小时前
事务与消息中间件:分布式系统中的可见性边界问题
分布式·后端
静若繁花_jingjing21 小时前
ZooKeeper & Nacos
分布式·zookeeper·云原生
wanhengidc21 小时前
云手机中分布式存储的功能
运维·服务器·分布式·游戏·智能手机·云计算
u***j32421 小时前
HarmonyOS分布式能力核心技术深度解析
分布式·华为·harmonyos