xinference - 大模型分布式推理框架

文章目录


关于 xinference

Xorbits Inference(Xinference)是一个性能强大且功能全面的分布式推理框架。

可用于大语言模型(LLM),语音识别模型,多模态模型等各种模型的推理。

通过 Xorbits Inference,你可以轻松地一键部署你自己的模型或内置的前沿开源模型。

无论你是研究者,开发者,或是数据科学家,都可以通过 Xorbits Inference 与最前沿的 AI 模型,发掘更多可能。


使用

1、启动 xinference

shell 复制代码
xinference-local -H 0.0.0.0 -p 8094

设置其他参数

Xinference 也允许从其他模型托管平台下载模型。可以通过在拉起 Xinference 时指定环境变量,比如,如果想要从 ModelScope 中下载模型,可以使用如下命令:

shell 复制代码
XINFERENCE_MODEL_SRC=modelscope xinference-local --host 0.0.0.0 --port  8094  

xinference 缓存地址:~/.xinference/cache

模型缓存地址,我使用 modelscope 下载模型,被缓存到 ~/.cache/modelscope/hub/qwen/Qwen-7B-Chat


2、加载模型

搜索,点击 chat model 设置参数,然后点击 飞机 来加载模型



如果你的第1个cuda 被占用,又设置 N-GPU 为 auto,可能会报如下错误

Server error: 400 - [address=0.0.0.0:46785, pid=12000] Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in 32-bit, you need to set load_in_8bit_fp32_cpu_offload=True and pass a custom device_map to from_pretrained. Check https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu for more details.

将 N-GPU 设置为 可用的cuda 就好



可以在 Running Models 中看到刚调起来的模型


3、模型交互

没有交互的 UI 界面,你可以使用代码进行交互

以下代码来自:https://inference.readthedocs.io/zh-cn/latest/index.html

python 复制代码
client = Client("http://localhost:8094")
model = client.get_model("qwen-chat") # 填入上面的 model id
# <xinference.client.restful.restful_client.RESTfulChatModelHandle object at 0x7f203fb8e050>


# Chat to LLM
model.chat(
   prompt="What is the largest animal?",
   system_prompt="You are a helpful assistant",
   generate_config={"max_tokens": 1024}
)

得到:

json 复制代码
{
	'id': 'chat744c3bf4-e5e3-11ee-8014-ac1f6b206f62',
	'object': 'chat.completion',
	'created': 1710847556,
	'model': 'qwen-chat',
	'choices': [{
		'index': 0,
		'message': {
			'role': 'assistant',
			'content': 'The largest animal on Earth is the blue whale, which can grow up to 100 feet (30 meters) in length and weigh as much as 200 tons (90 metric tonnes). It has the biggest brain of any living creature, with an estimated volume of around 70 cubic feet (26 liters). The blue whale also has one of the strongest voices in the world, capable of producing a loud noise that can be heard over 5 miles (8 kilometers) away.'
		},
		'finish_reason': 'stop'
	}],
	'usage': {
		'prompt_tokens': 24,
		'completion_tokens': 103,
		'total_tokens': 127
	}
}

其它

报错处理 - transformer.wte.weight

KeyError: [address=0.0.0.0:41435, pid=40327] 'transformer.wte.weight'

如果出现这个错误,可以检查下 cuda 是否能正常被 torch 调用:

shell 复制代码
 python -c "import torch; print(torch.cuda.is_available())"

伊织 2024-03-19(二)

相关推荐
Pota-to成长日记2 小时前
Redisson 看门狗机制深度解析:分布式锁的守护者
分布式·wpf
飞机火车巴雷特4 小时前
【论文阅读】Debating with More Persuasive LLMs Leads to More Truthful Answers
论文阅读·大模型·辩论机制
wangtianlang09124 小时前
深入理解Java多线程编程中的锁机制与性能优化策略
分布式
熊文豪6 小时前
Windows安装RabbitMQ保姆级教程
windows·分布式·rabbitmq·安装rabbitmq
喜欢吃豆6 小时前
多轮智能对话系统架构方案(可实战):从基础模型到自我优化的对话智能体,数据飞轮的重要性
人工智能·语言模型·自然语言处理·系统架构·大模型·多轮智能对话系统
Jolie_Liang15 小时前
金融大模型应用现状及未来趋势研究:国内外对比分析
金融·大模型
Amy1870211182317 小时前
分布式光纤传感:照亮每一个角落的“温度感知神经”
分布式
过往入尘土17 小时前
服务端与客户端的简单链接
人工智能·python·算法·pycharm·大模型
玉石观沧海19 小时前
高压变频器故障代码解析F67 F68
运维·经验分享·笔记·分布式·深度学习
居7然20 小时前
京东开源王炸!JoyAgent-JDGenie如何重新定义智能体开发?
人工智能·开源·大模型·mcp