xinference - 大模型分布式推理框架

文章目录


关于 xinference

Xorbits Inference(Xinference)是一个性能强大且功能全面的分布式推理框架。

可用于大语言模型(LLM),语音识别模型,多模态模型等各种模型的推理。

通过 Xorbits Inference,你可以轻松地一键部署你自己的模型或内置的前沿开源模型。

无论你是研究者,开发者,或是数据科学家,都可以通过 Xorbits Inference 与最前沿的 AI 模型,发掘更多可能。


使用

1、启动 xinference

shell 复制代码
xinference-local -H 0.0.0.0 -p 8094

设置其他参数

Xinference 也允许从其他模型托管平台下载模型。可以通过在拉起 Xinference 时指定环境变量,比如,如果想要从 ModelScope 中下载模型,可以使用如下命令:

shell 复制代码
XINFERENCE_MODEL_SRC=modelscope xinference-local --host 0.0.0.0 --port  8094  

xinference 缓存地址:~/.xinference/cache

模型缓存地址,我使用 modelscope 下载模型,被缓存到 ~/.cache/modelscope/hub/qwen/Qwen-7B-Chat


2、加载模型

搜索,点击 chat model 设置参数,然后点击 飞机 来加载模型



如果你的第1个cuda 被占用,又设置 N-GPU 为 auto,可能会报如下错误

Server error: 400 - [address=0.0.0.0:46785, pid=12000] Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in 32-bit, you need to set load_in_8bit_fp32_cpu_offload=True and pass a custom device_map to from_pretrained. Check https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu for more details.

将 N-GPU 设置为 可用的cuda 就好



可以在 Running Models 中看到刚调起来的模型


3、模型交互

没有交互的 UI 界面,你可以使用代码进行交互

以下代码来自:https://inference.readthedocs.io/zh-cn/latest/index.html

python 复制代码
client = Client("http://localhost:8094")
model = client.get_model("qwen-chat") # 填入上面的 model id
# <xinference.client.restful.restful_client.RESTfulChatModelHandle object at 0x7f203fb8e050>


# Chat to LLM
model.chat(
   prompt="What is the largest animal?",
   system_prompt="You are a helpful assistant",
   generate_config={"max_tokens": 1024}
)

得到:

json 复制代码
{
	'id': 'chat744c3bf4-e5e3-11ee-8014-ac1f6b206f62',
	'object': 'chat.completion',
	'created': 1710847556,
	'model': 'qwen-chat',
	'choices': [{
		'index': 0,
		'message': {
			'role': 'assistant',
			'content': 'The largest animal on Earth is the blue whale, which can grow up to 100 feet (30 meters) in length and weigh as much as 200 tons (90 metric tonnes). It has the biggest brain of any living creature, with an estimated volume of around 70 cubic feet (26 liters). The blue whale also has one of the strongest voices in the world, capable of producing a loud noise that can be heard over 5 miles (8 kilometers) away.'
		},
		'finish_reason': 'stop'
	}],
	'usage': {
		'prompt_tokens': 24,
		'completion_tokens': 103,
		'total_tokens': 127
	}
}

其它

报错处理 - transformer.wte.weight

KeyError: [address=0.0.0.0:41435, pid=40327] 'transformer.wte.weight'

如果出现这个错误,可以检查下 cuda 是否能正常被 torch 调用:

shell 复制代码
 python -c "import torch; print(torch.cuda.is_available())"

伊织 2024-03-19(二)

相关推荐
为什么不问问神奇的海螺呢丶8 分钟前
n9e categraf rabbitmq监控配置
分布式·rabbitmq·ruby
CoderJia程序员甲2 小时前
GitHub 热榜项目 - 日榜(2026-02-05)
ai·开源·大模型·github·ai教程
TTBIGDATA4 小时前
【Atlas】Atlas Hook 消费 Kafka 报错:GroupAuthorizationException
hadoop·分布式·kafka·ambari·hdp·linq·ranger
七牛云行业应用5 小时前
3.5s降至0.4s!Claude Code生产级连接优化与Agent实战
运维·人工智能·大模型·aigc·claude
m0_687399846 小时前
telnet localhost 15672 RabbitMQ “Connection refused“ 错误表示目标主机拒绝了连接请求。
分布式·rabbitmq
陌上丨7 小时前
生产环境分布式锁的常见问题和解决方案有哪些?
分布式
新新学长搞科研7 小时前
【智慧城市专题IEEE会议】第六届物联网与智慧城市国际学术会议(IoTSC 2026)
人工智能·分布式·科技·物联网·云计算·智慧城市·学术会议
香芋Yu7 小时前
【大模型教程——第四部分:大模型应用开发】第4章_多模态大模型原理
ai·大模型·多模态·大模型应用
穆友航7 小时前
配置 OpenClaw 使用 Ollama 本地模型
大模型·ollama·openclaw
xixixi777777 小时前
今日 AI 、通信、安全前沿日报(2026 年 2 月 5 日,星期四)
人工智能·网络安全·ai·信息安全·大模型·通信·前沿