xinference - 大模型分布式推理框架

文章目录


关于 xinference

Xorbits Inference(Xinference)是一个性能强大且功能全面的分布式推理框架。

可用于大语言模型(LLM),语音识别模型,多模态模型等各种模型的推理。

通过 Xorbits Inference,你可以轻松地一键部署你自己的模型或内置的前沿开源模型。

无论你是研究者,开发者,或是数据科学家,都可以通过 Xorbits Inference 与最前沿的 AI 模型,发掘更多可能。


使用

1、启动 xinference

shell 复制代码
xinference-local -H 0.0.0.0 -p 8094

设置其他参数

Xinference 也允许从其他模型托管平台下载模型。可以通过在拉起 Xinference 时指定环境变量,比如,如果想要从 ModelScope 中下载模型,可以使用如下命令:

shell 复制代码
XINFERENCE_MODEL_SRC=modelscope xinference-local --host 0.0.0.0 --port  8094  

xinference 缓存地址:~/.xinference/cache

模型缓存地址,我使用 modelscope 下载模型,被缓存到 ~/.cache/modelscope/hub/qwen/Qwen-7B-Chat


2、加载模型

搜索,点击 chat model 设置参数,然后点击 飞机 来加载模型



如果你的第1个cuda 被占用,又设置 N-GPU 为 auto,可能会报如下错误

Server error: 400 - [address=0.0.0.0:46785, pid=12000] Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in 32-bit, you need to set load_in_8bit_fp32_cpu_offload=True and pass a custom device_map to from_pretrained. Check https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu for more details.

将 N-GPU 设置为 可用的cuda 就好



可以在 Running Models 中看到刚调起来的模型


3、模型交互

没有交互的 UI 界面,你可以使用代码进行交互

以下代码来自:https://inference.readthedocs.io/zh-cn/latest/index.html

python 复制代码
client = Client("http://localhost:8094")
model = client.get_model("qwen-chat") # 填入上面的 model id
# <xinference.client.restful.restful_client.RESTfulChatModelHandle object at 0x7f203fb8e050>


# Chat to LLM
model.chat(
   prompt="What is the largest animal?",
   system_prompt="You are a helpful assistant",
   generate_config={"max_tokens": 1024}
)

得到:

json 复制代码
{
	'id': 'chat744c3bf4-e5e3-11ee-8014-ac1f6b206f62',
	'object': 'chat.completion',
	'created': 1710847556,
	'model': 'qwen-chat',
	'choices': [{
		'index': 0,
		'message': {
			'role': 'assistant',
			'content': 'The largest animal on Earth is the blue whale, which can grow up to 100 feet (30 meters) in length and weigh as much as 200 tons (90 metric tonnes). It has the biggest brain of any living creature, with an estimated volume of around 70 cubic feet (26 liters). The blue whale also has one of the strongest voices in the world, capable of producing a loud noise that can be heard over 5 miles (8 kilometers) away.'
		},
		'finish_reason': 'stop'
	}],
	'usage': {
		'prompt_tokens': 24,
		'completion_tokens': 103,
		'total_tokens': 127
	}
}

其它

报错处理 - transformer.wte.weight

KeyError: [address=0.0.0.0:41435, pid=40327] 'transformer.wte.weight'

如果出现这个错误,可以检查下 cuda 是否能正常被 torch 调用:

shell 复制代码
 python -c "import torch; print(torch.cuda.is_available())"

伊织 2024-03-19(二)

相关推荐
人工智能培训3 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
孤舟晓月5 小时前
Langchain 1.0后astream_events事件类型及生命周期简析
langchain·大模型·langgraph
小北的AI科技分享6 小时前
算力平台演进:从自建数据中心到云服务的模式解析
推理··
Tadas-Gao8 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
程序猿阿伟11 小时前
《分布式追踪Span-业务标识融合:端到端业务可观测手册》
分布式
玉梅小洋12 小时前
解决 VS Code Claude Code 插件「Allow this bash command_」弹窗问题
人工智能·ai·大模型·ai编程
松小鼠呀13 小时前
倒反天罡!AI雇佣人类,100美元真到账
人工智能·大模型·科技热点
wengad13 小时前
说说大模型的命名的含义
人工智能·大模型·基础设施
消失的旧时光-194313 小时前
第十六课实战:分布式锁与限流设计 —— 从原理到可跑 Demo
redis·分布式·缓存
若水不如远方13 小时前
分布式一致性(三):共识的黎明——Quorum 机制与 Basic Paxos
分布式·后端·算法