搭建基于 Snowflake 的 CI/CD 最佳实践!

Snowflake 提供了可扩展的计算和存储资源,和基于 SQL 的界面 Snowsight,方便用户进行数据操作和分析。然而,如果用户想将自己的 CI/CD 流程与 Snowflake 集成时,会发现一些不便之处(尤其相比其 SnowSight 优秀的查询能力)。

审核和发布流程

在 Snowflake 里,一个典型的更改工作流程如下:

  1. 数据工程师在 Jira 中创建 schema 变更工单。
  2. Snowflake 管理员审核该工单,然后使用 Snowsight 将更改应用到测试实例。
  3. 数据工程师确认更改,并回复工单请求管理员将更改应用到生产实例。
  4. Snowflake 管理员使用 Snowsight 将更改应用到生产环境。
  5. 数据工程师确认更改并关闭工单。

上述过程有多个来回,且容易出错。例如:如果管理员错误地先将更改应用到生产环境会怎样?

缺少自动化的 SQL 语法检查规则

现代的 CI 流水线需要配有自动审核规则。对于 Snowflake 来说,这尤为重要,因为删除一个列可能会破坏下游数据流水线。而 Snowflake 并不提供此类语法检查。

GitOps

Snowflake 最近宣布了 Git 集成

其中包括 Git 集成(预览版),可以轻松地将应用程序代码与 git 和 git 工作流进行集成。用户可以在 Snowflake 内部直接查看、运行、编辑和协作存在于 Git 仓库中的内容。

如果是类似 Vercel 的体验就更好了,当变更脚本合并到分支时,将自动触发一个滚动发布流水线,并可选择批准流程。

Bytebase:生而解决挑战

为应对 CI/CD 的挑战,Snowflake 打造了 schemachange

而另一个解决方案则是 Bytebase,详细对比可见 schemachange vs. Bytebase

基于 Web 的审查和发布流程

Bytebase 提供了基于 web 端的审核和发布界面,这类似 Jira,只不过是专门针对进行数据库变更的。例如,分阶段发布可将变更从测试直接发布到生产实例。

记录了 schema 变更历史。

检测由意外变更引起的数据库结构漂移 (schema drift)。

SQL 审核 + API

Bytebase 提供了一系列可配置的 SQL 语法检查规则,以检测 Snowflake SQL 反模式。配置完成后,在审核过程中将自动进行 SQL 审核。此外,可以从你的 VCS CI 调用 Bytebase API。

直接在 GitHub PR 中进行检查

总结一下

Bytebase 将 DevOps 和类似 GitHub / GitLab 的体验带入了 Snowflake 世界,可以跟着手把手教程一起试试。


💡 更多资讯,请关注 Bytebase 公号:Bytebase

相关推荐
vvw&13 分钟前
如何在 Ubuntu 22.04 上安装 phpMyAdmin
linux·运维·服务器·mysql·ubuntu·php·phpmyadmin
SEO-狼术17 分钟前
Enhance Security in Software Crack
数据库
计算机毕设定制辅导-无忧学长29 分钟前
Redis 初相识:开启缓存世界大门
数据库·redis·缓存
Rverdoser1 小时前
redis延迟队列
数据库·redis·缓存
灰勒塔德1 小时前
Linux文件IO
linux·运维·服务器
weisian1512 小时前
Redis篇--常见问题篇6--缓存一致性1(Mysql和Redis缓存一致,更新数据库删除缓存策略)
数据库·redis·缓存
dntktop2 小时前
解锁自动化新高度,zTasker v2.0全方位提升效率
运维·windows
运维&陈同学2 小时前
【Beats01】企业级日志分析系统ELK之Metricbeat与Heartbeat 监控
运维·elk·elasticsearch·云原生·kibana·heartbeat·metricbeat
中草药z2 小时前
【Spring】深入解析 Spring 原理:Bean 的多方面剖析(源码阅读)
java·数据库·spring boot·spring·bean·源码阅读
地球资源数据云2 小时前
全国30米分辨率逐年植被覆盖度(FVC)数据集
大数据·运维·服务器·数据库·均值算法