Bert的一些理解

Bert的一些理解

    • [Masked Language Model (MLM)](#Masked Language Model (MLM))
    • [Next Sentence Prediction (NSP)](#Next Sentence Prediction (NSP))
    • 总结

参考链接1
参考链接2

BERT 模型的训练数据集通常是以预训练任务的形式来构建的,其中包括两个主要任务:Masked Language Model (MLM)Next Sentence Prediction (NSP)。下面简要介绍这两个任务在数据集中的格式:

Masked Language Model (MLM)

  • 在 MLM 中,输入文本会被处理为一组 token 序列,其中一些 token 会被随机选择并替换为特殊的 [MASK] 标记。
  • 数据集中的每条样本是一个包含 [CLS] 句子 A [SEP] 句子 B [SEP] 的序列。
  • 句子 A 和句子 B 可能是相邻的句子,也可能是来自不同文本的句子。
  • 对于每个样本,一部分 token 会被随机选择并替换为 [MASK] 标记。
  • 训练时,BERT 模型需要预测这些被遮挡的 token。

举个例子

Next Sentence Prediction (NSP)

  • NSP 任务通过判断两个句子是否在原始文本中相邻来训练模型,以帮助提高模型在理解句子之间关系方面的能力。
  • 数据集中的每条样本由一对句子组成,包括正例 (IsNext) 和负例 (NotNext)。
  • 正例是原始文本中相邻的两个句子,负例是从其他地方抽取的两个不相邻的句子。
  • BERT 模型需要通过 NSP 任务来预测这对句子是否是相邻的。

举个例子:

对于每一个训练样例,我们在语料库中挑选出句子A和句子B来组成,50%的时候句子B就是句子A的下一句(标注为IsNext),剩下50%的时候句子B是语料库中的随机句子(标注为NotNext)。接下来把训练样例输入到BERT模型中,用[CLS]对应的C信息去进行二分类的预测。

因此,BERT 模型的训练数据集会以一定格式准备包含上述任务的样本,以便模型在预训练阶段学习语言表示。这种训练数据集的设计有助于提高模型对语言理解和推理的能力。

总结

相关推荐
扉间7987 分钟前
Transformer 核心概念转化为夏日生活类比
人工智能·transformer
要努力啊啊啊3 小时前
YOLOv1 技术详解:正负样本划分与置信度设计
人工智能·深度学习·yolo·计算机视觉·目标跟踪
vlln4 小时前
【论文解读】OmegaPRM:MCTS驱动的自动化过程监督,赋能LLM数学推理新高度
人工智能·深度学习·神经网络·搜索引擎·transformer
sky丶Mamba5 小时前
如何编写高效的Prompt:从入门到精通
人工智能·prompt
chilavert3186 小时前
深入剖析AI大模型:Prompt 开发工具与Python API 调用与技术融合
人工智能·python·prompt
科技林总7 小时前
支持向量机:在混沌中划出最强边界
人工智能
陈佬昔没带相机7 小时前
基于 open-webui 搭建企业级知识库
人工智能·ollama·deepseek
Mallow Flowers7 小时前
Python训练营-Day31-文件的拆分和使用
开发语言·人工智能·python·算法·机器学习
AntBlack8 小时前
Python : AI 太牛了 ,撸了两个 Markdown 阅读器 ,谈谈使用感受
前端·人工智能·后端
leo__5209 小时前
matlab实现非线性Granger因果检验
人工智能·算法·matlab