Bert的一些理解

Bert的一些理解

    • [Masked Language Model (MLM)](#Masked Language Model (MLM))
    • [Next Sentence Prediction (NSP)](#Next Sentence Prediction (NSP))
    • 总结

参考链接1
参考链接2

BERT 模型的训练数据集通常是以预训练任务的形式来构建的,其中包括两个主要任务:Masked Language Model (MLM)Next Sentence Prediction (NSP)。下面简要介绍这两个任务在数据集中的格式:

Masked Language Model (MLM)

  • 在 MLM 中,输入文本会被处理为一组 token 序列,其中一些 token 会被随机选择并替换为特殊的 [MASK] 标记。
  • 数据集中的每条样本是一个包含 [CLS] 句子 A [SEP] 句子 B [SEP] 的序列。
  • 句子 A 和句子 B 可能是相邻的句子,也可能是来自不同文本的句子。
  • 对于每个样本,一部分 token 会被随机选择并替换为 [MASK] 标记。
  • 训练时,BERT 模型需要预测这些被遮挡的 token。

举个例子

Next Sentence Prediction (NSP)

  • NSP 任务通过判断两个句子是否在原始文本中相邻来训练模型,以帮助提高模型在理解句子之间关系方面的能力。
  • 数据集中的每条样本由一对句子组成,包括正例 (IsNext) 和负例 (NotNext)。
  • 正例是原始文本中相邻的两个句子,负例是从其他地方抽取的两个不相邻的句子。
  • BERT 模型需要通过 NSP 任务来预测这对句子是否是相邻的。

举个例子:

对于每一个训练样例,我们在语料库中挑选出句子A和句子B来组成,50%的时候句子B就是句子A的下一句(标注为IsNext),剩下50%的时候句子B是语料库中的随机句子(标注为NotNext)。接下来把训练样例输入到BERT模型中,用[CLS]对应的C信息去进行二分类的预测。

因此,BERT 模型的训练数据集会以一定格式准备包含上述任务的样本,以便模型在预训练阶段学习语言表示。这种训练数据集的设计有助于提高模型对语言理解和推理的能力。

总结

相关推荐
Dcs39 分钟前
你的 Prompt 都该重写?
人工智能·ai编程
木卫二号Coding44 分钟前
第五十三篇-Ollama+V100+Qwen3:4B-性能
人工智能
飞哥数智坊1 小时前
AI 不只是聊天:聊聊我最近在做的新方向
人工智能
学生高德1 小时前
小模型结合大模型的加速方法关键笔记
人工智能·深度学习·机器学习
蓝耘智算1 小时前
GPU算力租赁与算力云平台选型指南:从需求匹配到成本优化的实战思路
大数据·人工智能·ai·gpu算力·蓝耘
liliangcsdn1 小时前
如何用bootstrap模拟估计pass@k
大数据·人工智能·bootstrap
dagouaofei2 小时前
AI生成个性化年终总结PPT
人工智能·python·powerpoint
机器之心2 小时前
登顶SuperCLUE DeepSearch,openPangu-R-72B深度搜索能力跃升
人工智能·openai
DMD1682 小时前
AI赋能旅游与酒店业:技术逻辑与开发实践解析
大数据·人工智能·信息可视化·重构·旅游·产业升级
TG:@yunlaoda360 云老大2 小时前
谷歌云AI 时代的算力革命:CPU、GPU 到 TPU 的架构与定位解析
人工智能·架构·googlecloud