Bert的一些理解

Bert的一些理解

    • [Masked Language Model (MLM)](#Masked Language Model (MLM))
    • [Next Sentence Prediction (NSP)](#Next Sentence Prediction (NSP))
    • 总结

参考链接1
参考链接2

BERT 模型的训练数据集通常是以预训练任务的形式来构建的,其中包括两个主要任务:Masked Language Model (MLM)Next Sentence Prediction (NSP)。下面简要介绍这两个任务在数据集中的格式:

Masked Language Model (MLM)

  • 在 MLM 中,输入文本会被处理为一组 token 序列,其中一些 token 会被随机选择并替换为特殊的 [MASK] 标记。
  • 数据集中的每条样本是一个包含 [CLS] 句子 A [SEP] 句子 B [SEP] 的序列。
  • 句子 A 和句子 B 可能是相邻的句子,也可能是来自不同文本的句子。
  • 对于每个样本,一部分 token 会被随机选择并替换为 [MASK] 标记。
  • 训练时,BERT 模型需要预测这些被遮挡的 token。

举个例子

Next Sentence Prediction (NSP)

  • NSP 任务通过判断两个句子是否在原始文本中相邻来训练模型,以帮助提高模型在理解句子之间关系方面的能力。
  • 数据集中的每条样本由一对句子组成,包括正例 (IsNext) 和负例 (NotNext)。
  • 正例是原始文本中相邻的两个句子,负例是从其他地方抽取的两个不相邻的句子。
  • BERT 模型需要通过 NSP 任务来预测这对句子是否是相邻的。

举个例子:

对于每一个训练样例,我们在语料库中挑选出句子A和句子B来组成,50%的时候句子B就是句子A的下一句(标注为IsNext),剩下50%的时候句子B是语料库中的随机句子(标注为NotNext)。接下来把训练样例输入到BERT模型中,用[CLS]对应的C信息去进行二分类的预测。

因此,BERT 模型的训练数据集会以一定格式准备包含上述任务的样本,以便模型在预训练阶段学习语言表示。这种训练数据集的设计有助于提高模型对语言理解和推理的能力。

总结

相关推荐
2301_76444133几秒前
基于神经网络的肾脏疾病预测模型
人工智能·深度学习·神经网络
子燕若水7 分钟前
用gpt-4o 生成图的教程和常用提示词
人工智能
weixin_4424240311 分钟前
Opencv计算机视觉编程攻略-第七节 提取直线、轮廓和区域
人工智能·opencv·计算机视觉
x-cmd13 分钟前
[250401] OpenAI 向免费用户开放 GPT-4o 图像生成功能 | Neovim 0.11 新特性解读
人工智能·gpt·文生图·openai·命令行·neovim
HABuo22 分钟前
【YOLOv8】YOLOv8改进系列(12)----替换主干网络之StarNet
人工智能·深度学习·yolo·目标检测·计算机视觉
Bruce_Liuxiaowei26 分钟前
智能语音识别工具开发手记
人工智能·python·语音识别
王亭_66628 分钟前
Ollama+open-webui搭建私有本地大模型详细教程
人工智能·大模型·ollama·openwebui·deepseek
集和诚JHCTECH32 分钟前
集和诚携手Intel重磅发布BRAV-7820边缘计算新品,为车路云一体化场景提供强大算力支撑
人工智能·嵌入式硬件·边缘计算
itwangyang52034 分钟前
人工智能在生物医药领域的应用地图:AIBC2025将于6月在上海召开!
人工智能·百度
PingCAP1 小时前
TiDB 亮相宜昌“医院‘云数智’技术实践研讨及成果展示交流会”,探讨国产化 + AI 背景下的数据库新趋势
数据库·人工智能·tidb