Bert的一些理解

Bert的一些理解

    • [Masked Language Model (MLM)](#Masked Language Model (MLM))
    • [Next Sentence Prediction (NSP)](#Next Sentence Prediction (NSP))
    • 总结

参考链接1
参考链接2

BERT 模型的训练数据集通常是以预训练任务的形式来构建的,其中包括两个主要任务:Masked Language Model (MLM)Next Sentence Prediction (NSP)。下面简要介绍这两个任务在数据集中的格式:

Masked Language Model (MLM)

  • 在 MLM 中,输入文本会被处理为一组 token 序列,其中一些 token 会被随机选择并替换为特殊的 [MASK] 标记。
  • 数据集中的每条样本是一个包含 [CLS] 句子 A [SEP] 句子 B [SEP] 的序列。
  • 句子 A 和句子 B 可能是相邻的句子,也可能是来自不同文本的句子。
  • 对于每个样本,一部分 token 会被随机选择并替换为 [MASK] 标记。
  • 训练时,BERT 模型需要预测这些被遮挡的 token。

举个例子

Next Sentence Prediction (NSP)

  • NSP 任务通过判断两个句子是否在原始文本中相邻来训练模型,以帮助提高模型在理解句子之间关系方面的能力。
  • 数据集中的每条样本由一对句子组成,包括正例 (IsNext) 和负例 (NotNext)。
  • 正例是原始文本中相邻的两个句子,负例是从其他地方抽取的两个不相邻的句子。
  • BERT 模型需要通过 NSP 任务来预测这对句子是否是相邻的。

举个例子:

对于每一个训练样例,我们在语料库中挑选出句子A和句子B来组成,50%的时候句子B就是句子A的下一句(标注为IsNext),剩下50%的时候句子B是语料库中的随机句子(标注为NotNext)。接下来把训练样例输入到BERT模型中,用[CLS]对应的C信息去进行二分类的预测。

因此,BERT 模型的训练数据集会以一定格式准备包含上述任务的样本,以便模型在预训练阶段学习语言表示。这种训练数据集的设计有助于提高模型对语言理解和推理的能力。

总结

相关推荐
智驱力人工智能7 分钟前
工厂智慧设备检测:多模态算法提升工业安全阈值
人工智能·算法·安全·边缘计算·智慧工厂·智能巡航·工厂设备检测
计算机sci论文精选1 小时前
ECCV 2024 论文解读丨具身智能、机器人研究最新突破创先点分享合集
人工智能·科技·深度学习·计算机视觉·机器人·cvpr
大模型真好玩1 小时前
深入浅出LangChain AI Agent智能体开发教程(八)—LangChain接入MCP实现流程
人工智能·python·mcp
R-G-B2 小时前
【15】OpenCV C++实战篇——fitEllipse椭圆拟合、 Ellipse()画椭圆
c++·人工智能·opencv·fitellipse椭圆拟合·ellipse画椭圆·椭圆拟合·绘制椭圆
lll482332 小时前
opencv颜色识别项目:识别水果
人工智能·opencv·计算机视觉
飞哥数智坊2 小时前
Trae vs Cursor:深度体验 Trae 一个月后,我的真实感受
人工智能·cursor·trae
云布道师2 小时前
秒懂边缘云|1分钟了解边缘安全加速 ESA
人工智能·安全·阿里云·ai·云计算·云布道师
2501_924731473 小时前
城市路口识别准确率↑31%!陌讯时空建模算法在交通拥堵识别中的突破
人工智能·算法·目标检测·计算机视觉·目标跟踪
m0_616330454 小时前
Day 40 训练和测试的规范写法
人工智能·深度学习·机器学习
数据饕餮4 小时前
Pytorch深度学习框架实战教程-番外篇05-Pytorch全连接层概念定义、工作原理和作用
人工智能·pytorch·深度学习