RAFT: Adapting Language Model to Domain Specific RAG

RAFT: Adapting Language Model to Domain Specific RAG

相关链接:arXiv GitHub

关键字:Retrieval-Augmented Fine Tuning (RAFT)Large Language Models (LLMs)Domain Specific RAGDistractor DocumentsChain-of-Thought

摘要

预训练大型语言模型(LLMs)在大量文本数据上已成为标准范式。在使用这些LLMs进行许多下游应用时,通常会通过基于RAG的提示或微调,将新知识(例如,时效性新闻或私有领域知识)融入预训练模型中。然而,模型获取这些新知识的最优方法仍然是一个开放问题。本文提出了一种名为Retrieval Augmented Fine Tuning(RAFT)的训练方法,它提高了模型在"开卷"领域特定设置中回答问题的能力。RAFT通过训练模型忽略那些对回答问题没有帮助的文档(我们称之为干扰文档),来实现这一点。RAFT通过引用相关文档中正确的序列来回答这个问题。RAFT的链式思维风格响应有助于提高模型的推理能力。在特定领域的RAG中,RAFT在PubMed、HotpotQA和Gorilla数据集上持续提高了模型的性能,为提高预训练LLMs在领域特定RAG中的表现提供了一种后训练方法。

核心方法

  1. Retrieval Augmented Fine Tuning (RAFT):RAFT是一种训练方法,旨在通过微调来适应特定领域的开卷考试设置,即领域特定的RAG。
  2. 区分文档类型:在训练数据中,区分"oracle"文档(包含问题答案的文档)和"distractor"文档(不包含答案相关信息的文档)。
  3. 链式思维风格答案:RAFT训练模型生成包含链式思维的答案,这些答案引用了上下文中的原始文档,并详细解释了如何基于引用得出结论。
  4. 处理干扰文档:在训练过程中,模型被训练以在存在干扰文档的情况下回答问题,这有助于提高模型在测试时对检索结果的鲁棒性。

实验说明

实验使用了多个数据集来评估RAFT模型的性能,包括PubMed QA、HotpotQA和Gorilla API Bench。实验结果显示,RAFT在所有专业领域中都显著提高了性能,尤其是在处理领域特定RAG任务时。实验还包括了对RAFT模型在不同数量的测试文档下的性能进行评估,以测试模型对检索结果中干扰文档的鲁棒性。

数据集 GPT-3.5 + RAG LLaMA2-7B LLaMA2-7B + RAG DSF DSF + RAG RAFT (LLaMA2-7B)
PubMed 71.60 56.5 58.8 59.7 71.6 73.30
HotpotQA 41.5 0.54 0.03 6.38 4.41 35.28
HuggingFace 29.08 0.22 26.43 61.06 42.59 74.00
Torch Hub 60.21 0 8.60 84.94 82.80 84.95
TensorFlow Hub 65.59 0 43.06 86.56 60.29 86.86

结论

RAFT是一种旨在提高模型在特定领域内回答问题性能的训练策略。这种技术展示了一种针对基于选定文档集合的领域特定问题回答任务的LLMs微调配方。我们确定了一些关键设计决策,例如与干扰文档一起训练模型、组织数据集以便部分数据缺乏上下文中的oracle文档,以及以链式思维方式制定答案并直接引用相关文本。我们在PubMed、HotpotQA和Gorilla API Bench上的评估强调了RAFT的显著潜力。展望未来,我们预计领域特定的检索增强生成(RAG)将继续在工业和学术领域内获得关注。与一般RAG不同,我们的工作解决了LLMs被赋予使用领域特定知识回答问题的实际场景。与当前趋势一致,我们的发现表明,较小的微调模型能够在领域特定问题回答任务中表现得与它们的通用LLM对应物一样好。

相关推荐
刘什么洋啊Zz1 小时前
MacOS下使用Ollama本地构建DeepSeek并使用本地Dify构建AI应用
人工智能·macos·ai·ollama·deepseek
奔跑草-2 小时前
【拥抱AI】GPT Researcher 源码试跑成功的心得与总结
人工智能·gpt·ai搜索·deep research·深度检索
禁默3 小时前
【第四届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2025】网络安全,人工智能,数字经济的研究
人工智能·安全·web安全·数字经济·学术论文
浮华落定4 小时前
RagFlow+Ollama 构建RAG私有化知识库
知识库·rag·ollama·ragflow
AnnyYoung4 小时前
华为云deepseek大模型平台:deepseek满血版
人工智能·ai·华为云
INDEMIND5 小时前
INDEMIND:AI视觉赋能服务机器人,“零”碰撞避障技术实现全天候安全
人工智能·视觉导航·服务机器人·商用机器人
慕容木木5 小时前
【全网最全教程】使用最强DeepSeekR1+联网的火山引擎,没有生成长度限制,DeepSeek本体的替代品,可本地部署+知识库,注册即可有750w的token使用
人工智能·火山引擎·deepseek·deepseek r1
南 阳5 小时前
百度搜索全面接入DeepSeek-R1满血版:AI与搜索的全新融合
人工智能·chatgpt
企鹅侠客6 小时前
开源免费文档翻译工具 可支持pdf、word、excel、ppt
人工智能·pdf·word·excel·自动翻译
冰淇淋百宝箱6 小时前
AI 安全时代:SDL与大模型结合的“王炸组合”——技术落地与实战指南
人工智能·安全