遥感图像地物分类流程

遥感图像地物分类流程

1. 制作标签

使用arcgis pro或者arcgis或者envi,画标签,保存为tiff格式

2. 处理标签数据

用python gdal库安装 osgdal库,如果安装失败就需要下载 对应库得 .whl去安装,网站具体搞忘了,可以百度

或者rasterio库

2.1 读入tif数据
python 复制代码
def readTif(fileName):
    """
    dataset包含了tif文件得属性比如
    波段数
    高
    宽
    数据
    """
    dataset = rasterio.open(fileName)
    if dataset == None:
        print(fileName + "文件无法打开")
        return None
    # print(dataset.width)
   
    return dataset
2.2 处理数据
python 复制代码
import csv
# 提取栅格图像信息,制作数据
ori_dataset = readTif(orgin_path)
label_dataset = readTif(sample_path)

width = ori_dataset.width # 宽
height = ori_dataset.height # 高

bands = ori_dataset.count # 波段数
# ori_data = for k in range(bands)

label_matri = label_dataset.read(1) #读出标签的矩阵
data_matri = ori_dataset.read() #原始图像的矩阵

count = np.count_nonzero(label_matri) #非零就是标签, 有多少非零的就代表样本像素是多少
print(count)
train_data = np.zeros((count, 8), dtype=data_matri.dtype) # 新建一个count*8的numpy数组,第8维度是原始图像的某一像素点对应的标签,0~6代表这一个像素点对应的7ge波段,landsata影像
nonzero_indices = np.nonzero(label_matri) #非零索引, 返回的是
"""
(row:array([ 30,  31,  31, ..., 390, 390, 390], dtype=int64), col:array([166, 165, 166, ..., 186, 187, 188], dtype=int64))
"""
print(nonzero_indices)
# 写入数据csv, 提取训练数据
# 将 train_data 写入 CSV 文件
csv_file = open(csv_filename, mode='w', newline='')
csv_writer = csv.writer(csv_file)
# 写入 CSV 文件的标题行,包括 Label 和 LabelName
csv_writer.writerow(csv_head_name)
    
for i in range(count):
    print(i)
    row, col = nonzero_indices[0][i], nonzero_indices[1][i]
    train_data[i, :7] = data_matri[:, row, col]
    train_data[i, 7] = label_matri[row, col]
    label = int(train_data[i, 7])
    row_data = train_data[i]
    row_data = np.append(row_data, labels_name[label])  # 在数据行中添加 LabelName
    csv_writer.writerow(row_data)
        
print(f"已将数据写入 CSV 文件: {csv_filename}")
csv_file.close()
2.3 数据格式

生成的数据格式如下

csv 复制代码
Band1,Band2,Band3,Band4,Band5,Band6,Band7,Label,LabelName
812,774,969,1111,1152,1146,1069,2,building
801,755,846,1016,1177,1411,1472,2,building
794,748,949,1179,1202,1399,1383,2,building
605,567,691,877,1537,1880,2070,2,building
602,556,768,994,1506,1625,1607,2,building
613,570,768,1045,1394,1483,1460,2,building
465,408,562,772,963,1035,990,2,building
549,484,648,828,969,1096,1028,2,building

3. 训练

python 复制代码
from sklearn.ensemble import RandomForestClassifier
from sklearn import model_selection
import pickle

X = train_data[:, :7]
Y = train_data[:, 7]
# print(X.shape)
# print(Y.shape)
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, Y, test_size=0.1, random_state=42, stratify=Y)
print(y_train)
# 3.用100个树来创建随机森林模型,训练随机森林
classifier = RandomForestClassifier(n_estimators=100,
                               bootstrap = True,
                               max_features = 'sqrt')
classifier.fit(X_train, y_train)


#  4.计算随机森林的准确率
print("训练集:",classifier.score(X_train,y_train))
print("测试集:",classifier.score(X_test,y_test))

pred_test_y = classifier.predict(X_test)
cfm = CFM(5, labels_name)
cfm.update(pred_test_y, y_test)
acc, comment_numpy = cfm.get_cfm()
print(comment_numpy)
cfm.plot()


file = open(model_path, "wb")
#将模型写入文件:
pickle.dump(classifier, file)
#最后关闭文件:
file.close()

4. 使用模型预测

python 复制代码
pred_dataset = readTif(pred_path)
pred_width = pred_dataset.width
pred_height = pred_dataset.height
pred_bands = pred_dataset.count
pred_geotrans = pred_dataset.transform
pred_crs = pred_dataset.crs

print(pred_geotrans)
print(pred_crs)


file = open(model_path, "rb")
# 把模型从文件中读取出来
rf_model = pickle.load(file)
# 关闭文件
file.close()

pred_martix = pred_dataset.read()
data = np.zeros((pred_martix.shape[0], pred_martix.shape[1] * pred_martix.shape[2]))

# print(pred_martix.shape)
# print(pred_martix[0])
for i in range(pred_martix.shape[0]):
    # 第i个波段一维数组
    data[i] = pred_martix[i].flatten()
# 转换下维度
pred_x = data.swapaxes(0, 1)

pred_y = rf_model.predict(pred_x)
# print(pred_y, pred_y.shape)

# 将标签还原为图像的二维矩阵
pred_image = pred_y.reshape(pred_martix.shape[1], pred_martix.shape[2])
height_, width_ = pred_image.shape
tif_data = np.zeros((height_, width_, 3), dtype=np.int64)
for label, color in color_mapping.items():
    tif_data[pred_image == label] = color

tif_data = np.transpose(tif_data, (2, 0, 1))

im_bands, im_height, im_width = tif_data.shape
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(pred_result_tif_path, im_width, im_height, im_bands, gdal.GDT_Byte)
for i in range(im_bands):
    dataset.GetRasterBand(i + 1).WriteArray(tif_data[i])
# if dataset != None:
#     #将栅格数据和地理坐标系统关联起来
#     dataset.SetProjection(pred_crs)  # 写入投影
#     dataset.SetGeoTransform(pred_geotrans)  # 写入仿射变换参数
    
dataset = None

5. other

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from prettytable import PrettyTable

class CFM:
    """
    混淆矩阵类
    返回精度和混淆举证
    """
    def __init__(self, num_classes: int, labels: list):
        self.matrix = np.zeros((num_classes, num_classes))
        self.num_classes = num_classes
        self.labels = labels

    def plot(self):
        matrix = self.matrix
        print(matrix)
        plt.imshow(matrix, cmap=plt.cm.Blues)

        # 设置x轴坐标label
        plt.xticks(range(self.num_classes), self.labels, rotation=45)
        # 设置y轴坐标label
        plt.yticks(range(self.num_classes), self.labels)
        # 显示colorbar
        plt.colorbar()
        plt.xlabel('True Labels')
        plt.ylabel('Predicted Labels')
        plt.title('Confusion matrix')

        # 在图中标注数量/概率信息
        thresh = matrix.max() / 2
        for x in range(self.num_classes):
            for y in range(self.num_classes):
                # 注意这里的matrix[y, x]不是matrix[x, y]
                info = int(matrix[y, x])
                plt.text(x, y, info,
                         verticalalignment='center',
                         horizontalalignment='center',
                         color="white" if info > thresh else "black")
        plt.tight_layout()
        plt.show()

    def update(self, preds, labels):
        """_summary_

        Args:
            preds (_type_): _description_
            labels (_type_): _description_

        preds:预测值
        labels:真实值
        confusion martix
               label0 label1 label2 label3
        pred0
        pred1
        pred2
        pred3
        """
        for p, t in zip(preds, labels):
            self.matrix[p, t] += 1
        print("confusion matrix", self.matrix)
    
    def get_cfm(self):

        """
        Accuarcy: 正确样本占总样本数量的比例
        Percision: 精度Precision
        Recall: 召回率
        Specificaity: 特异性
        """
        sum_true = 0
        for i in range(self.num_classes):
            sum_true += self.matrix[i, i]
        acc = sum_true / np.sum(self.matrix)
        print("the model accuracy is ", acc)
        comment_labels = ["categeory", "Precision", "Recall", "Specificity"]
        tabel = PrettyTable()
        tabel.field_names = comment_labels
        comment_numpy = np.zeros((self.num_classes, 3))
        for i in range(self.num_classes):
        # 第i个分类的精确率, 召回率, 特异度
            TP = self.matrix[i, i]
            FP = np.sum(self.matrix[i, :]) - TP
            FN = np.sum(self.matrix[:, i]) - TP
            TN = np.sum(self.matrix) - TP - FN - FP
            # 保留三位小数, 如果 TP + FN 不等于零,就计算并将结果四舍五入到小数点后三位;否则,率设置为0。
            Precision = round(TP / (TP + FP), 3) if TP + FP != 0 else 0.
            Recall = round(TP / (TP + FN), 3) if TP + FN != 0 else 0.
            Specificity = round(TN / (TN + FP), 3) if TN + FP != 0 else 0.
            tabel.add_row([self.labels[i], Precision, Recall, Specificity])
            comment_numpy[i] = [Precision, Recall, Specificity]
        print(tabel)
        return acc, comment_numpy
    
if __name__ == "__main__":
    cfm = CFM(2, ["cat", "dog"])
    actual = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0]
    predicted = [1, 0, 1, 0, 0, 1, 1, 1, 1, 0]
    cfm.update(predicted, actual)
    acc, comment_numpy = cfm.get_cfm()
    print(comment_numpy)
    cfm.plot()

变量名代表得含义

python 复制代码
sample_path = "../sample/sample.tif" #标签图
orgin_path = "../datasets/landsat.tif" #原始图
pred_path = "../datasets/landsat.tif" #需要预测的图
txt_Path = "./result/label_data.txt" #无
labels_name = ["", "tudi", "building", "veg", "water"] # 样本名字,分类的类别
csv_filename = '../result/train_data.csv' # 生成训练数据的存放路径
csv_head_name = ['Band1', 'Band2', 'Band3', 'Band4', 'Band5', 'Band6', 'Band7', 'Label', "LabelName"] # 存放格式
model_path = "../model/myrnf.pickle" # 最终保存的模型路径
pred_result_tif_path = "../result/pred_landsat.tif" # 用训练的模型保存的路径
color_mapping = {
    1: (255, 255, 0),
    2: (255, 0, 0),
    3: (0, 255, 0),
    4: (0, 0, 255)
}
# 颜色映射从2D标签映射到3D
相关推荐
矢量赛奇17 分钟前
比ChatGPT更酷的AI工具
人工智能·ai·ai写作·视频
KuaFuAI25 分钟前
微软推出的AI无代码编程微应用平台GitHub Spark和国产AI原生无代码工具CodeFlying比到底咋样?
人工智能·github·aigc·ai编程·codeflying·github spark·自然语言开发软件
Make_magic34 分钟前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉
shelly聊AI38 分钟前
语音识别原理:AI 是如何听懂人类声音的
人工智能·语音识别
源于花海41 分钟前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
雷龙发展:Leah42 分钟前
离线语音识别自定义功能怎么用?
人工智能·音频·语音识别·信号处理·模块测试
4v1d1 小时前
边缘计算的学习
人工智能·学习·边缘计算
风之馨技术录1 小时前
智谱AI清影升级:引领AI视频进入音效新时代
人工智能·音视频
sniper_fandc1 小时前
深度学习基础—Seq2Seq模型
人工智能·深度学习
goomind1 小时前
深度学习模型评价指标介绍
人工智能·python·深度学习·计算机视觉