Python - 深度学习系列30 - 使用LLaMA-Factory微调模型

说明

最实用的一种利用大语言模型的方式是进行微调。预训练模型与我们的使用场景一定会存在一些差异,而我们又不可能重头训练。

微调的原理并不复杂,载入模型,灌新的数据,然后运行再训练,保留checkpoints。但是不同项目的代码真的不太一样,每一个都要单独去看的话比较费神。

本篇简单讨论一下用LLaMA-Factory微调模型的体验。

内容

1 LLaMA-Factory

LLaMA-Factory(https://github.com/hiyouga/LLaMA-Factory)是零隙智能(SeamLessAI)开源的低代码大模型训练框架,它集成了业界最广泛使用的微调方法和优化技术,并支持业界众多的开源模型的微调和二次训练,开发者可以使用私域数据、基于有限算力完成领域大模型的定制开发。LLaMA-Factory还为开发者提供了可视化训练、推理平台,一键配置模型训练,实现零代码微调LLM。自2023年5月开源以来,成为社区内最受欢迎的微调框架,github星数已超9K。

github项目地址

从目前的开源三大系(LLaMA, ChatGLM, BLOOM )来看,数量上的确还是Lamma系的多。

2 部署环境

用仙宫云部署,价格比较实惠,且环境比较新。

注意,云盘默认挂在 /root/cloud下,所以文件可以存在这里。

3 拉取项目并启动服务

由于环境基本已经适配好的,安装过程也很快

bash 复制代码
git clone https://github.com/hiyouga/LLaMA-Factory.git

cd LLaMA-Factory
pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/

然后执行web前端的启动命令

复制代码
python3 ./scr/train_web.py

就会唤起一个前端(因为服务已经关掉了,忘了截图)

4 拉取模型文件

我使用chatglm3-6b-base进行测试。

由于hugging face有墙, modelscope就是比较好的选择。

两种方式:

包方式:事实证明不是那么好,模型包存放的位置还要靠grep找出来

复制代码
pip install modelscope
from modelscope import snapshot_download
model_dir = snapshot_download("ZhipuAI/chatglm3-6b", revision = "v1.0.0")

git方式

bash 复制代码
git lfs install
git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git

5 在web端配置

本次是连通性测试,我就修改了一下模型所在的文件夹位置,然后选择lora,别的都没改,就开始跑了。

整个微调的时间大约在4小时,期间显存慢慢上升到21G,总体上应该是可用的。

今天主要就是调通,后续再更新。

相关推荐
天上路人15 分钟前
AI神经网络降噪算法在语音通话产品中的应用优势与前景分析
深度学习·神经网络·算法·硬件架构·音视频·实时音视频
小白学大数据22 分钟前
Scrapy框架下地图爬虫的进度监控与优化策略
开发语言·爬虫·python·scrapy·数据分析
浊酒南街22 分钟前
TensorFlow之微分求导
人工智能·python·tensorflow
立秋678928 分钟前
用Python绘制梦幻星空
开发语言·python·pygame
alpszero40 分钟前
YOLO11解决方案之对象裁剪探索
人工智能·python·计算机视觉·yolo11
白云千载尽1 小时前
相机、雷达标定工具,以及雷达自动标定的思路
python·自动驾驶·ros
咕噜咕噜啦啦1 小时前
python爬虫实战训练
爬虫·python
盛夏绽放1 小时前
Python字符串常用内置函数详解
服务器·开发语言·python
我想睡觉2611 小时前
Python训练营打卡DAY27
开发语言·python·机器学习
蹦蹦跳跳真可爱5891 小时前
Python----神经网络(基于DNN的风电功率预测)
人工智能·pytorch·python·深度学习·神经网络·dnn