极智项目 | 基于NCNN+YOLOX实现的适用于工业流水线工控机CPU场景的包子目标检测算法

欢迎关注我的公众号「极智视界」,获取我的更多技术分享

大家好,我是极智视界,本文分享一下 基于NCNN+YOLOX实现的适用于工业流水线工控机CPU场景的包子目标检测算法。


在工业 4.0 时代背景下,计算机视觉在工业流水线场景的应用越来越广泛。通过实时捕捉和解析流水线上的图像信息,实现了从产品质量把控到流程优化、零件识别与分拣等一系列核心生产环节的智能化升级。例如,在质量控制层面,计算机视觉可以取代传统的人工质检,以更高精度和速度发现产品瑕疵,保障产品质量的一致性和稳定性;同时,通过对流水线动态的精准监测,可以有效指导生产流程的优化,优化生产成本、提升装配精度和生产效率。

工业流水线场景的计算机视觉的计算载体通常为工控机,而工控机一般就是 CPU 的,所以在算法部署的时候是需要在 CPU 上进行部署,本项目就是在 CPU 上使用 NCNN+YOLOX 来部署包子目标检测算法,以适应工业流水线工控机的算法部署。

这个项目使用移动端主流推理框架 NCNN 来做加速实现,项目的特点是轻量化、使用 C++ 开发、能够适配 CPU 场景,能够适应识别多姿态、多目标的包子检测。项目提供完整的代码,包括推理代码、一键执行脚本、包子检测模型权重、项目三方依赖库 (NCNN + OpenCV)、待检测的测试图片、检测后的效果图等。

项目使用 cmake 进行工程编译组织,并自动链接到相对路径的三方库,所以整个项目不会因为是否是绝对路径而影响报错。在拿到项目代码后,直接运行 run.sh一键执行脚本即可进行工程编译 + 执行推理测试。run.sh 的内容如下:

bash 复制代码
#!/bin/bash

# 执行推理
# cd ..
rm -rf build

mkdir build
cd build

cmake -DCMAKE_BUILD_TYPE=Debug ..
make -j8

cd release

./test ../../imgs/005.png

mv out.bmp ../../res
# cd ../..

下面展示包子检测效果,部分检测结果如下,可以看到检测的效果很棒。

项目获取方式:

https://download.csdn.net/download/weixin_42405819/89009586

好了,以上分享了 基于NCNN+YOLOX实现的适用于工业流水线工控机CPU场景的包子目标检测算法,希望我的分享能对你的学习有一点帮助。

相关推荐
Faker66363aaa6 小时前
城市地标建筑与车辆检测 - 基于YOLOv10n的高效目标检测模型训练与应用
人工智能·yolo·目标检测
Piar1231sdafa10 小时前
深度学习目标检测算法之YOLOv26加拿大鹅检测
深度学习·算法·目标检测
向哆哆18 小时前
恶性疟原虫显微镜图像的目标检测数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
向哆哆19 小时前
道路表面多类型缺陷的图像识别数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
jay神1 天前
基于 YOLOv11 的人脸表情识别系统
人工智能·深度学习·yolo·目标检测·计算机视觉
向哆哆2 天前
高压电线电力巡检六类目标的图像识别数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
向哆哆2 天前
七种常见虫子的图像识别数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
AI浩2 天前
面向对象保真度的遥感图像生成扩散模型
人工智能·目标检测
Lun3866buzha2 天前
多类别目标检测实战——使用yolov10n-PST模型实现猫、狗、人类和兔子的识别与定位
人工智能·yolo·目标检测
AI浩3 天前
VISION KAN:基于Kan的无注意力视觉骨干网络
人工智能·目标检测