极智项目 | 基于NCNN+YOLOX实现的适用于工业流水线工控机CPU场景的包子目标检测算法

欢迎关注我的公众号「极智视界」,获取我的更多技术分享

大家好,我是极智视界,本文分享一下 基于NCNN+YOLOX实现的适用于工业流水线工控机CPU场景的包子目标检测算法。


在工业 4.0 时代背景下,计算机视觉在工业流水线场景的应用越来越广泛。通过实时捕捉和解析流水线上的图像信息,实现了从产品质量把控到流程优化、零件识别与分拣等一系列核心生产环节的智能化升级。例如,在质量控制层面,计算机视觉可以取代传统的人工质检,以更高精度和速度发现产品瑕疵,保障产品质量的一致性和稳定性;同时,通过对流水线动态的精准监测,可以有效指导生产流程的优化,优化生产成本、提升装配精度和生产效率。

工业流水线场景的计算机视觉的计算载体通常为工控机,而工控机一般就是 CPU 的,所以在算法部署的时候是需要在 CPU 上进行部署,本项目就是在 CPU 上使用 NCNN+YOLOX 来部署包子目标检测算法,以适应工业流水线工控机的算法部署。

这个项目使用移动端主流推理框架 NCNN 来做加速实现,项目的特点是轻量化、使用 C++ 开发、能够适配 CPU 场景,能够适应识别多姿态、多目标的包子检测。项目提供完整的代码,包括推理代码、一键执行脚本、包子检测模型权重、项目三方依赖库 (NCNN + OpenCV)、待检测的测试图片、检测后的效果图等。

项目使用 cmake 进行工程编译组织,并自动链接到相对路径的三方库,所以整个项目不会因为是否是绝对路径而影响报错。在拿到项目代码后,直接运行 run.sh一键执行脚本即可进行工程编译 + 执行推理测试。run.sh 的内容如下:

bash 复制代码
#!/bin/bash

# 执行推理
# cd ..
rm -rf build

mkdir build
cd build

cmake -DCMAKE_BUILD_TYPE=Debug ..
make -j8

cd release

./test ../../imgs/005.png

mv out.bmp ../../res
# cd ../..

下面展示包子检测效果,部分检测结果如下,可以看到检测的效果很棒。

项目获取方式:

https://download.csdn.net/download/weixin_42405819/89009586

好了,以上分享了 基于NCNN+YOLOX实现的适用于工业流水线工控机CPU场景的包子目标检测算法,希望我的分享能对你的学习有一点帮助。

相关推荐
weixin_377634843 小时前
【数据增强】精细化贴图数据增强
人工智能·目标检测·贴图
加油吧zkf4 小时前
目标检测新纪元:DETR到Mamba实战解析
图像处理·人工智能·python·目标检测·分类
一花·一叶19 小时前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算
昵称是6硬币20 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
云天徽上10 天前
【目标检测】图像处理基础:像素、分辨率与图像格式解析
图像处理·人工智能·目标检测·计算机视觉·数据可视化
king of code porter10 天前
目标检测之YOLOv5到YOLOv11——从架构设计和损失函数的变化分析
人工智能·yolo·目标检测
justtoomuchforyou10 天前
PillarNet: Real-Time and High-PerformancePillar-based 3D Object Detection
人工智能·目标检测·计算机视觉·智驾
model200511 天前
yolov11转ncnn
yolo·ncnn
仙贝大饼11 天前
C#Halcon从零开发_Day14_AOI缺陷检测策略1_Bolb分析+特征分析_饼干破损检测
c#·缺陷检测·halcon·机器视觉·aoi
凌佚11 天前
rknn优化教程(三)
c++·yolo·目标检测