【YOLOv8性能对比试验】YOLOv8n/s/m/l/x不同模型尺寸大小的实验结果对比及结论参考

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。

更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~

👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称 项目名称
1.【人脸识别与管理系统开发 2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发 4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发 6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发 8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统 12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统 14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统 16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统 18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统 22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统 24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统 26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统 28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统 30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统 32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统 34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统 36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统 38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统 40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统 42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统 44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统 46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统

二、机器学习实战专栏【链接】 ,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~

《------正文------》

本文主要是针对YOLOv8n/s/m/l/x这5种不同尺寸大小的yolov8模型,在自己的某目标检测数据集上进行了训练对比实验,并得出了一些参考性的结论,供小伙伴们参考学习。如果有什么问题,欢迎一起学习交流。

1. 引言

YOLOv8 是YOLO 系列实时物体检测器较新的迭代产品,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

不同YOLO版本在COCO数据集上的性能对比如下:

2. YOLOv8主要亮点

采用先进的骨干和颈部架构: YOLOv8 采用了最先进的骨干和颈部架构,从而提高了特征提取和物体检测性能。

无锚Ultralytics 头: YOLOv8 采用无锚Ultralytics 头,与基于锚的方法相比,它有助于提高检测过程的准确性和效率。

优化精度与速度之间的权衡: YOLOv8 专注于保持精度与速度之间的最佳平衡,适用于各种应用领域的实时目标检测任务。

各种预训练模型: YOLOv8 提供一系列预训练模型,以满足各种任务和性能要求,从而更容易为您的特定用例找到合适的模型。

YOLOv8网路结构如下所示:

3. YOLOv8不同模型尺寸性能对比

1. 在COCO数据集上性能对比

官方给出的不同尺寸大小yolov8模型在COCO数据集上的性能对比如下:

模型 尺寸 (像素) mAPval 50-95 速度 CPUONNX (ms) 速度 A100 TensorRT (毫秒) params (M) FLOPs (B)
YOLOv8n 640 37.3 80.4 0.99 3.2 8.7
YOLOv8s 640 44.9 128.4 1.20 11.2 28.6
YOLOv8m 640 50.2 234.7 1.83 25.9 78.9
YOLOv8l 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8

2. 自行实验训练结果对比

博主在某目标检测数据集 上,对于YOLOv8n/s/m/l/x这5种不同尺寸的大小进行了对比实验,试验结果如下:
训练过程的损失曲线对比如下:

训练过程中的精确度(Precision)、召回率(Recall)、平均精确度(Mean Average Precision, mAP)等参数的对比如下:

最终精度结果对比:

名称 YOLOv8n YOLOv8s YOLOv8m YOLOv8l YOLOv8x
mAP@0.5 0.728 0.747 0.776 0.771 0.767
F1-Score 0.68 0.70 0.73 0.73 0.73

4. 结论

针对此目标检测数据集,从上述的模型训练实验结果可以看出:

  1. 从模型训练过程损失曲线上看,YOLOv8n/s/m/l/x这5个不同尺寸大小的模型训练过程的收敛速度相差不大;val验证集训练曲线逐渐平滑代表训练过程基本收敛
  2. 从训练结果的性能精度上看,YOLOv8m/l/x > YOLOv8s > YOLOv8n
  3. 从训练结果的性能精度上看,YOLOv8m/l/x这三种模型的训练结果精度相差不大 ,并没有出现随着模型尺寸的增大,训练结果越来越好的情况。因此模型并不是尺寸越大,训练出来的性能效果越好。
  4. 针对此数据集,从最终性能来看,这5种网络模型使用YOLOv8m大小的模型尺寸,即可达到最高精度需求,无需选用尺寸更大的YOLOv8l/x模型进行训练。

以上结论只是针对我的这个目标检测实验数据集得出了,并不能一概而论。其他数据集训练可能会不一样,但是结论可以作为参考,小伙伴们可以根据实际数据集与需求选择合适大小的模型进行训练。


后续,还会出一些关于模型对比、改进对比等相关实验结果,供大家参考。

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

相关推荐
菜狗woc8 分钟前
opencv-python的简单练习
人工智能·python·opencv
15年网络推广青哥12 分钟前
国际抖音TikTok矩阵运营的关键要素有哪些?
大数据·人工智能·矩阵
AI莫大猫13 分钟前
(6)YOLOv4算法基本原理以及和YOLOv3 的差异
算法·yolo
weixin_3875456431 分钟前
探索 AnythingLLM:借助开源 AI 打造私有化智能知识库
人工智能
engchina1 小时前
如何在 Python 中忽略烦人的警告?
开发语言·人工智能·python
paixiaoxin2 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
OpenCSG2 小时前
CSGHub开源版本v1.2.0更新
人工智能
weixin_515202492 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
Altair澳汰尔2 小时前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
机器之心3 小时前
图学习新突破:一个统一框架连接空域和频域
人工智能·后端