CUDA编程:CUDA环境变量 CUDA Environment Variables

CUDA编程:CUDA环境变量 CUDA Environment Variables

变量 描述
设备枚举与属性
CUDA_VISIBLE_DEVICES MIG支持的GPU标识符的逗号分隔序列:MIG-/<GPU实例ID>/<计算实例ID> GPU标识符以整数索引或UUID字符串的形式给出。GPU UUID字符串应遵循nvidia-smi给出的相同格式,例如GPU-8932f937-d72c-4106-c12f-20bd9faed9f6。
CUDA_MANAGED_FORCE_DEVICE_ALLOC 0 或 1(默认值为 0) 强制驱动程序将所有托管分配放置在设备内存中。
CUDA_DEVICE_ORDER FASTEST_FIRST, PCI_BUS_ID,(默认值为 FASTEST_FIRST) FASTEST_FIRST 会使 CUDA 使用简单的启发式方法,按照从快到慢的顺序枚举可用的设备。PCI_BUS_ID 则根据 PCI 总线 ID 对设备进行排序。
编译
CUDA_CACHE_DISABLE 0 或 1(默认值为 0) 禁用(当设置为 1 时)或启用(当设置为 0 时)即时编译的缓存。当禁用时,不会向缓存中添加或从缓存中检索二进制代码。
CUDA_CACHE_PATH 文件路径 指定即时编译器缓存二进制代码的文件夹;默认值如下: 在 Windows 上:%APPDATA%\NVIDIA\ComputeCache 在 Linux 上:~/.nv/ComputeCache
CUDA_CACHE_MAXSIZE 整数(对于桌面/服务器平台,默认值为1 GiB,对于嵌入式平台,默认值为 256 MiB,最大值为 4 GiB) 指定即时编译器使用的缓存大小(以字节为单位)。
CUDA_FORCE_PTX_JIT 0 或 1(默认值为 0) 当设置为 1 时,强制设备驱动程序忽略应用程序中嵌入的任何二进制代码,并仅即时编译嵌入的 PTX 代码。
CUDA_DISABLE_PTX_JIT 0 或 1(默认值为 0) 当设置为 1 时,禁用嵌入的 PTX 代码的即时编译,并使用应用程序中嵌入的兼容二进制代码
CUDA_FORCE_JIT 0 或 1(默认值为 0) 当设置为 1 时,强制设备驱动程序忽略应用程序中嵌入的任何二进制代码,并始终使用即时编译来生成二进制代码。
CUDA_DISABLE_JIT 0 或 1(默认值为 0) 当设置为 1 时,禁用嵌入的 PTX 代码的即时编译,并使用应用程序中嵌入的兼容二进制代码
执行
CUDA_LAUNCH_BLOCKING 0 或 1(默认值为 0) 禁用(设置为 1 时)或启用(设置为 0 时)异步内核启动。
CUDA_DEVICE_MAX_CONNECTIONS 1 到 32(默认值为 8) 设置从主机到每个计算能力为 3.5 及以上的设备的计算和复制引擎并发连接(工作队列)的数量。
CUDA_AUTO_BOOST 0 或 1 覆盖 nvidia-smi 的 --auto-boost-default 选项设置的自动增强行为。
cuda-gdb (on Linux platform)
CUDA_DEVICE_WAITS_ON_EXCEPTION 0 或 1(默认值为 0) 当设置为 1 时,如果发生设备异常,CUDA 应用程序将停止,允许附加调试器进行进一步调试。
MPS service (on Linux platform)
CUDA_DEVICE_DEFAULT_PERSISTING_L2_CACHE_PERCENTAGE_LIMIT 百分比值(介于 0 - 100 之间,默认值为 0) 计算能力为 8.x 的设备允许将 L2 缓存的一部分设置为持久化全局内存数据访问。
模块加载
CUDA_MODULE_LOADING DEFAULT, LAZY, EAGER(默认值为 LAZY) 指定应用程序的模块加载模式。
CUDA_MODULE_DATA_LOADING DEFAULT, LAZY, EAGER(默认值为 LAZY) 指定应用程序的数据加载模式。.
预加载依赖库
CUDA_FORCE_PRELOAD_LIBRARIES 0 或 1(默认值为 0) 当设置为 1 时,强制驱动程序在初始化期间预加载 NVVM 和 PTX 即时编译所需的库。
CUDA Graphs
CUDA_GRAPHS_USE_NODE_PRIORITY 0 或 1 在图形实例化时覆盖 cudaGraphInstantiateFlagUseNodePriority 标志。当设置为 1 时,该标志将为所有图形设置,当设置为 0 时,该标志将为所有图形清除。
相关推荐
lucky_lyovo2 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn6 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy10 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
静心问道34 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域36 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶37 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域37 分钟前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源
群联云防护小杜39 分钟前
深度隐匿源IP:高防+群联AI云防护防绕过实战
运维·服务器·前端·网络·人工智能·网络协议·tcp/ip
摘星编程44 分钟前
构建智能客服Agent:从需求分析到生产部署
人工智能·需求分析·智能客服·agent开发·生产部署
不爱学习的YY酱1 小时前
信息检索革命:Perplexica+cpolar打造你的专属智能搜索中枢
人工智能