AQS源码分析

前言

AbstractQueuedSynchronizer是抽象同步队列,其是实现同步机器的基础组件,并发包中的锁的底层就是使用AQS实现的。

AQS中 维护了一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞时会进入此队列)。

这里volatile能够保证多线程下的可见性,当state=1则代表当前对象锁已经被占有,其他线程来加锁时则会失败,加锁失败的线程会被放入一个FIFO的等待队列中,并且会被UNSAFE.park()操作挂起,等待其他获取锁的线程释放锁才能够被唤醒。

另外state的操作都是通过CAS来保证其并发修改的安全性。

一、AQS中的关键成员变量

  • state
    • 在AQS中,维护了一个单一变量state,对于不同的实现其有不同的意义:
    • 在ReentrantLock中,state表示重入式锁的可重入次数
    • 在ReentrantReadWriteLock中,state的高16位用于表示读锁的可获取次数,低16位用于表示写锁的可重入次数。
  • exclusiveOwnerThread
    • 继承自AbstractOwnableSynchronizer,用于指明当前独占线程。
  • headtail
    • 维护了一个队列,分别指向首尾节点
  • Node
    • Node节点内部的SHARED用来标记该线程是在获取共享资源时被阻塞挂起放入AQS队列的,EXCLUSIVE用来标识该线程是获取独占资源时被阻塞挂起放入AQS队列的。
    • 在Node节点内部有一个成员变量waitStatus记录当前线程等待状态,可以为:
      • 1:CANCELLED(线程被取消了)
      • -1:SIGNAL(线程需要唤醒)
      • -2:CONDITION(线程在条件队列里等待)
      • -3:PROPAGATE(释放资源时需要通知其他节点)
  • ConditionObject
    • ConditionObject和Node一样是AQS的内部类。它用来结合锁实现线程同步,其可以访问AQS的内部变量(state和AQS阻塞队列)。
    • ConditionObject是条件变量,每个条件变量对应一个条件队列,我们可以看到ConditionObject中有两个指针,分别指向条件队列的队尾和队头。条件队列用来存放调用条件变量的await方法后被阻塞的线程。

二、线程中断相关的三个方法

三、Unsafe与LockSupport

Unsafe

  • CAS的全称是Compare-And-Swap,它是一条CPU并发原语。
  • 它的功能是判断内存某个位置是否是预期值,如果是则更改为新的值,这个过程是原子性的
  • CAS并发原语在 java的体现就是sun.mic.Unsafe类个各个方法,调用Unsafe类的方法,JVM会帮助我们实现CAS汇编指令。这是一个完全依赖于硬件的功能,通过它实现原子性操作。由于CAS是一种系统原语,由若干指令组成,该原语执行必须连续的不许中断。

这里设置了静态代码块提前获取了state、head、tail、waitStatus、next四个参数在对象内存中的偏移量。

java 复制代码
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long stateOffset;
    private static final long headOffset;
    private static final long tailOffset;
    private static final long waitStatusOffset;
    private static final long nextOffset;

    static {
        try {
            stateOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("waitStatus"));
            nextOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("next"));

        } catch (Exception ex) { throw new Error(ex); }
    }

    /**
     * CAS head field. Used only by enq.
     */
    private final boolean compareAndSetHead(Node update) {
        return unsafe.compareAndSwapObject(this, headOffset, null, update);
    }

    /**
     * CAS tail field. Used only by enq.
     */
    private final boolean compareAndSetTail(Node expect, Node update) {
        return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
    }

    /**
     * CAS waitStatus field of a node.
     */
    private static final boolean compareAndSetWaitStatus(Node node,
                                                         int expect,
                                                         int update) {
        return unsafe.compareAndSwapInt(node, waitStatusOffset,
                                        expect, update);
    }

    /**
     * CAS next field of a node.
     */
    private static final boolean compareAndSetNext(Node node,
                                                   Node expect,
                                                   Node update) {
        return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
    }

LockSupport

LockSupport是用来创建锁和其他同步类的基本线程阻塞原语 。简而言之,当调用LockSupport.park时,表示当前线程将会等待 ,直至获得许可,当调用LockSupport.unpark时,必须把等待获得许可的线程作为参数进行传递,好让此线程继续运行

  • park函数,阻塞线程,并且该线程在下列情况发生之前都会被阻塞: ① 调用unpark函数,释放该线程的许可。② 该线程被中断。③ 设置的时间到了。并且,当time为绝对时间时,isAbsolute为true,否则,isAbsolute为false。当time为0时,表示无限等待,直到unpark发生。
  • unpark函数,释放线程的许可,即激活调用park后阻塞的线程。这个函数不是安全的,调用这个函数时要确保线程依旧存活。
java 复制代码
public class LockSupportDemo {

    public static void main(String[] args) {
        Thread A = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("线程A被LockSupport.park()阻塞");
                LockSupport.park();
                System.out.println("线程A被线程B LockSupport.unpark()唤醒");
            }
        },"A");
        A.start();

        
        Thread B = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("线程B唤醒线程A");
                // 唤醒指定线程t,也就是A
                LockSupport.unpark(A);
            }
        },"B")
        B.start();
    }
}


结果:
线程A被LockSupport.park()阻塞
线程B唤醒线程A
线程A被线程B LockSupport.unpark()唤醒

四、核心源码

以ReentrantLock为例进行讲解,AQS是典型的模板方法的实现,所以AQS对外暴露了多个个抽象方法(tryAcquire、tryRelease等等)需要子类进行实现。

ReentrantLock的lock方法实际上调用了sync的lock方法,而sync继承了AQS,同时针对公平策略和非公平策略有不同的实现。这里我们主要看针对非公平锁NonfairSync的实现。

lock()

java 复制代码
    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        /**
         * Performs lock.  Try immediate barge, backing up to normal
         * acquire on failure.
         */
        final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }
java 复制代码
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
java 复制代码
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            // 第一次加锁
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            // 持有锁的线程重复加锁
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
java 复制代码
    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        // 获取锁失败,再次判断队列是否初始化
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }
java 复制代码
    private Node enq(final Node node) {
        // 第一次执行,也就是head和tail两个指针都为null,会初始化两个Node
        for (;;) {
            Node t = tail;
            // 初始化队列,设置一个空Node,并将head与tail两个指针同时指向该节点
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            // 队列已经初始化完成,则将该节点插入队列尾部
            } else {
                node.prev = t;
                // 注意,此时t仍然指向,为尾节点的上一个节点
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }



java 复制代码
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                // 如果当前节点的前置节点是头节点,则意味着本次入队操作是第一次
                final Node p = node.predecessor();
                    // 如果是第一次入队,则再次尝试获取state
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                    // 非第一次入队/第一次入对的第二次循环
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

因为lock方法是不可中断的,所以从lock方法中进来构建起来的同步队列不会有CANCELLED状态。CONDITION用于条件队列当中。PROPAGETE是用于共享模式下的状态。

java 复制代码
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        // Acquire失败以后是否需要挂起,true:需要-false:不需要
        // 针对ReentrantLock,这里指挥判断SIGNAL
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        // ws > 0  =  CANCELLED
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
java 复制代码
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

整体流程:

unLock()

java 复制代码
    public void unlock() {
        sync.release(1);
    }
java 复制代码
    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
java 复制代码
        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            // 标识锁是否释放
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }
java 复制代码
    private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }

这里线程二被唤醒以后将继续执行acquireQueued方法,判断线程二 的前置节点是否为head,如果是则继续使用tryAcquire()方法来尝试获取锁,其实就是使用CAS操作来修改state值,如果修改成功则代表获取锁成功。接着将线程二 设置为head节点,然后空置之前的head节点数据,被空置的节点数据等着被垃圾回收

在线程二释放锁以后,这个时候CLH队列中就只剩下线程三:

五、知识拓展

公平锁与非公平锁

非公平锁执行原理:

公平锁执行原理:

参考内容:

相关推荐
ShenLiang202518 分钟前
TF-IDF计算过程一步步推导详解含代码演示
开发语言·python
959y2 小时前
[Go 微服务] Kratos 使用的简单总结
开发语言·golang·kratos
虫小宝3 小时前
如何在Java中实现批量数据处理
java·开发语言
PeterClerk3 小时前
基于Pygame的贪吃蛇小游戏实现
开发语言·python·pygame
king888866663 小时前
Java中的AQS
java
冰暮流星3 小时前
软设之类的继承与泛化,多重继承
java·开发语言
虫小宝3 小时前
Java中的多线程与并发编程详解
java·开发语言
oNuoyi3 小时前
定位线上同步锁仍然重复扣费的Bug定位及Redis分布式锁解决方案
java·spring boot·redis·分布式
Easonmax3 小时前
【C++】 解决 C++ 语言报错:Undefined Reference
java·开发语言·c++
Lightning-py3 小时前
Python使用(...)连接字符串
开发语言·python