Pytorch:torch.nn.functional.pad()

torch.nn.functional.pad 是PyTorch函数,用于在张量的各个轴上添加填充 。这个函数是 torch.nn.functional 模块下的一个实用函数,它可以自由地添加不同数量的填充到输入张量的任意边界

用法

使用 torch.nn.functional.pad 需要提供输入张量一个填充值 列表,该列表指明了每个维度两侧的填充量 。此外,还可以指定填充类型,例如 'constant'(使用固定值进行填充)、'reflect'(使用反射填充方式)、'replicate'(使用重复模式填充)等。

以下是几个 pad 函数的例子:

python 复制代码
import torch
import torch.nn.functional as F

# 创建一个二维矩阵
tensor = torch.arange(9).view(3, 3)

# 将 tensor 周围填充一层零
# 填充格式为:(左, 右, 上, 下)
padded_tensor = F.pad(tensor, (1, 1, 1, 1), 'constant', 0)

# 使用反射方式填充
# 反射填充不需要额外的填充值,会将tensor边缘的值反射至填充部分
padded_tensor_reflect = F.pad(tensor, (1, 1, 1, 1), 'reflect')

# 使用重复模式填充
# 重复模式会取边缘的值并在填充区域重复它
padded_tensor_replicate = F.pad(tensor, (1, 1, 1, 1), 'replicate')

在实际应用中,填充操作通常用于确保某些卷积层或池化层后的尺寸满足要求,或者处理边界情况,比如图像处理中边界的处理等。

pad 函数的灵活性在于,它可以处理不同数量不同类型的填充需求,提供了实现各种填充策略的基础。

相关推荐
CUMT_DJ1 分钟前
唐宇迪2025最新机器学习课件——学习心得(1)
人工智能·机器学习
丁浩6666 分钟前
Python机器学习---1.数据类型和算法:线性回归
开发语言·python·机器学习·线性回归
流烟默8 分钟前
机器学习中一些场景的模型评估与理解图表
大数据·人工智能·机器学习
H_z_q240113 分钟前
Python动态类型、运算符、输入处理及算法编程问答
python
格林威18 分钟前
近红外工业相机的简单介绍和场景应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造·工业相机
JJJJ_iii21 分钟前
【机器学习07】 激活函数精讲、Softmax多分类与优化器进阶
人工智能·笔记·python·算法·机器学习·分类·线性回归
Pocker_Spades_A26 分钟前
机器学习之生成对抗网络(GAN)
人工智能·深度学习·生成对抗网络
IT_陈寒29 分钟前
Python性能优化:5个被低估但效果惊人的内置函数实战解析
前端·人工智能·后端
PieroPc36 分钟前
用Python Streamlit sqlite3 写一个简单博客
数据库·python·sqlite