Pytorch:torch.nn.functional.pad()

torch.nn.functional.pad 是PyTorch函数,用于在张量的各个轴上添加填充 。这个函数是 torch.nn.functional 模块下的一个实用函数,它可以自由地添加不同数量的填充到输入张量的任意边界

用法

使用 torch.nn.functional.pad 需要提供输入张量一个填充值 列表,该列表指明了每个维度两侧的填充量 。此外,还可以指定填充类型,例如 'constant'(使用固定值进行填充)、'reflect'(使用反射填充方式)、'replicate'(使用重复模式填充)等。

以下是几个 pad 函数的例子:

python 复制代码
import torch
import torch.nn.functional as F

# 创建一个二维矩阵
tensor = torch.arange(9).view(3, 3)

# 将 tensor 周围填充一层零
# 填充格式为:(左, 右, 上, 下)
padded_tensor = F.pad(tensor, (1, 1, 1, 1), 'constant', 0)

# 使用反射方式填充
# 反射填充不需要额外的填充值,会将tensor边缘的值反射至填充部分
padded_tensor_reflect = F.pad(tensor, (1, 1, 1, 1), 'reflect')

# 使用重复模式填充
# 重复模式会取边缘的值并在填充区域重复它
padded_tensor_replicate = F.pad(tensor, (1, 1, 1, 1), 'replicate')

在实际应用中,填充操作通常用于确保某些卷积层或池化层后的尺寸满足要求,或者处理边界情况,比如图像处理中边界的处理等。

pad 函数的灵活性在于,它可以处理不同数量不同类型的填充需求,提供了实现各种填充策略的基础。

相关推荐
会的全对٩(ˊᗜˋ*)و9 分钟前
【数据挖掘】数据挖掘综合案例—银行精准营销
人工智能·经验分享·python·数据挖掘
云渚钓月梦未杳11 分钟前
深度学习03 人工神经网络ANN
人工智能·深度学习
在美的苦命程序员14 分钟前
中文语境下的视频生成革命:百度 MuseSteamer 的“产品级落地”启示录
人工智能·百度
___波子 Pro Max.28 分钟前
GitHub Actions配置python flake8和black
python·black·flake8
kngines30 分钟前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
Kali_0734 分钟前
使用 Mathematical_Expression 从零开始实现数学题目的作答小游戏【可复制代码】
java·人工智能·免费
贾全40 分钟前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
每日摸鱼大王1 小时前
互联网摸鱼日报(2025-07-01)
人工智能
GIS小天1 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票
我是小哪吒2.01 小时前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型