Pytorch:torch.nn.functional.pad()

torch.nn.functional.pad 是PyTorch函数,用于在张量的各个轴上添加填充 。这个函数是 torch.nn.functional 模块下的一个实用函数,它可以自由地添加不同数量的填充到输入张量的任意边界

用法

使用 torch.nn.functional.pad 需要提供输入张量一个填充值 列表,该列表指明了每个维度两侧的填充量 。此外,还可以指定填充类型,例如 'constant'(使用固定值进行填充)、'reflect'(使用反射填充方式)、'replicate'(使用重复模式填充)等。

以下是几个 pad 函数的例子:

python 复制代码
import torch
import torch.nn.functional as F

# 创建一个二维矩阵
tensor = torch.arange(9).view(3, 3)

# 将 tensor 周围填充一层零
# 填充格式为:(左, 右, 上, 下)
padded_tensor = F.pad(tensor, (1, 1, 1, 1), 'constant', 0)

# 使用反射方式填充
# 反射填充不需要额外的填充值,会将tensor边缘的值反射至填充部分
padded_tensor_reflect = F.pad(tensor, (1, 1, 1, 1), 'reflect')

# 使用重复模式填充
# 重复模式会取边缘的值并在填充区域重复它
padded_tensor_replicate = F.pad(tensor, (1, 1, 1, 1), 'replicate')

在实际应用中,填充操作通常用于确保某些卷积层或池化层后的尺寸满足要求,或者处理边界情况,比如图像处理中边界的处理等。

pad 函数的灵活性在于,它可以处理不同数量不同类型的填充需求,提供了实现各种填充策略的基础。

相关推荐
_codemonster4 分钟前
深度学习实战(基于pytroch)系列(四十)长短期记忆(LSTM)从零开始实现
人工智能·深度学习·lstm
问知AI18 分钟前
InsightMatrix:问知AI的核心基座大模型
人工智能·科技·ai写作·内容运营
深圳佛手27 分钟前
实例说明大模型参数到底是什么
人工智能
OpenCSG30 分钟前
智源Emu3.5发布:34B参数的世界模型基座,以“下一状态预测”重塑多模态Scaling范式
人工智能·开源
rabbit_pro30 分钟前
Java 文件上传到服务器本地存储
java·服务器·python
leo_23231 分钟前
SMP(软件制作平台)到底是什么?--小视频番外篇之一
人工智能·科技创新·smp(软件制作平台)·中国语言
youcans_31 分钟前
【DeepSeek 论文精读】15. DeepSeek-V3.2:开拓开源大型语言模型新前沿
论文阅读·人工智能·语言模型·智能体·deepseek
_Twink1e33 分钟前
【HCIA-AIV4.0】2025题库+解析(二)
人工智能·深度学习·机器学习
新知图书34 分钟前
FastGPT的特点与优势
人工智能·ai agent·智能体·大模型应用开发·大模型应用
serve the people1 小时前
PQ+IVF组合解决海量向量内存占用高和检索慢的问题
人工智能·python