Pytorch:torch.nn.functional.pad()

torch.nn.functional.pad 是PyTorch函数,用于在张量的各个轴上添加填充 。这个函数是 torch.nn.functional 模块下的一个实用函数,它可以自由地添加不同数量的填充到输入张量的任意边界

用法

使用 torch.nn.functional.pad 需要提供输入张量一个填充值 列表,该列表指明了每个维度两侧的填充量 。此外,还可以指定填充类型,例如 'constant'(使用固定值进行填充)、'reflect'(使用反射填充方式)、'replicate'(使用重复模式填充)等。

以下是几个 pad 函数的例子:

python 复制代码
import torch
import torch.nn.functional as F

# 创建一个二维矩阵
tensor = torch.arange(9).view(3, 3)

# 将 tensor 周围填充一层零
# 填充格式为:(左, 右, 上, 下)
padded_tensor = F.pad(tensor, (1, 1, 1, 1), 'constant', 0)

# 使用反射方式填充
# 反射填充不需要额外的填充值,会将tensor边缘的值反射至填充部分
padded_tensor_reflect = F.pad(tensor, (1, 1, 1, 1), 'reflect')

# 使用重复模式填充
# 重复模式会取边缘的值并在填充区域重复它
padded_tensor_replicate = F.pad(tensor, (1, 1, 1, 1), 'replicate')

在实际应用中,填充操作通常用于确保某些卷积层或池化层后的尺寸满足要求,或者处理边界情况,比如图像处理中边界的处理等。

pad 函数的灵活性在于,它可以处理不同数量不同类型的填充需求,提供了实现各种填充策略的基础。

相关推荐
天天睡大觉2 分钟前
Python学习9
开发语言·python·学习
三千世界0062 分钟前
Claude Code Agent Skills 自动发现原理详解
人工智能·ai·大模型·agent·claude·原理
2301_797312263 分钟前
学习Java39天
开发语言·python·学习
曲幽5 分钟前
FastAPI搭档Pydantic:从参数验证到数据转换的全链路实战
python·fastapi·web·path·field·query·pydantic·basemodel·response_model
云和恩墨5 分钟前
数据库运维的下一步:Bethune X以AI实现从可观测到可处置
人工智能·aiops·数据库监控·数据库运维·数据库巡检
飞睿科技8 分钟前
探讨雷达在智能家居与消费电子领域的应用
人工智能·嵌入式硬件·智能家居·雷达·毫米波雷达
沛沛老爹11 分钟前
Web转AI决策篇 Agent Skills vs MCP:选型决策矩阵与评估标准
java·前端·人工智能·架构·rag·web转型
Baihai_IDP16 分钟前
如何减少单智能体输出结果的不确定性?利用并行智能体的“集体智慧”
人工智能·面试·llm
老蒋每日coding16 分钟前
AI智能体设计模式系列(五)—— 工具使用模式
人工智能·设计模式
抠头专注python环境配置17 分钟前
2026终极诊断指南:解决Windows PyTorch GPU安装失败,从迷茫到确定
人工智能·pytorch·windows·深度学习·gpu·环境配置·cuda