Pytorch:torch.nn.functional.pad()

torch.nn.functional.pad 是PyTorch函数,用于在张量的各个轴上添加填充 。这个函数是 torch.nn.functional 模块下的一个实用函数,它可以自由地添加不同数量的填充到输入张量的任意边界

用法

使用 torch.nn.functional.pad 需要提供输入张量一个填充值 列表,该列表指明了每个维度两侧的填充量 。此外,还可以指定填充类型,例如 'constant'(使用固定值进行填充)、'reflect'(使用反射填充方式)、'replicate'(使用重复模式填充)等。

以下是几个 pad 函数的例子:

python 复制代码
import torch
import torch.nn.functional as F

# 创建一个二维矩阵
tensor = torch.arange(9).view(3, 3)

# 将 tensor 周围填充一层零
# 填充格式为:(左, 右, 上, 下)
padded_tensor = F.pad(tensor, (1, 1, 1, 1), 'constant', 0)

# 使用反射方式填充
# 反射填充不需要额外的填充值,会将tensor边缘的值反射至填充部分
padded_tensor_reflect = F.pad(tensor, (1, 1, 1, 1), 'reflect')

# 使用重复模式填充
# 重复模式会取边缘的值并在填充区域重复它
padded_tensor_replicate = F.pad(tensor, (1, 1, 1, 1), 'replicate')

在实际应用中,填充操作通常用于确保某些卷积层或池化层后的尺寸满足要求,或者处理边界情况,比如图像处理中边界的处理等。

pad 函数的灵活性在于,它可以处理不同数量不同类型的填充需求,提供了实现各种填充策略的基础。

相关推荐
qzhqbb2 分钟前
语言模型的采样方法
人工智能·语言模型·自然语言处理
qzhqbb5 分钟前
基于 Transformer 的语言模型
人工智能·语言模型·自然语言处理·transformer
___Dream6 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
Open-AI10 分钟前
Python如何判断一个数是几位数
python
极客代码13 分钟前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深16 分钟前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow
疯一样的码农20 分钟前
Python 正则表达式(RegEx)
开发语言·python·正则表达式
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
撞南墙者1 小时前
OpenCV自学系列(1)——简介和GUI特征操作
人工智能·opencv·计算机视觉
OCR_wintone4211 小时前
易泊车牌识别相机,助力智慧工地建设
人工智能·数码相机·ocr