【深度学习】NestedTensors

文章目录

NestedTensors

DETR 中常见的数据格式为 NestedTensors,那么什么是 NestedTensors 呢?

NestedTensor,包括 tensormask 两个成员,tensor 就是输入的图像。mask 跟 tensor 同高宽但是单通道。比如 masks 大小为 (1, 800, 1440),tensor 大小为 (1, 3, 800, 1440)。

Why NestedTensor

当数据是连续的时,通常情况下每个样本都有不同的长度。

例如,在一批句子中,每个句子都有不同数量的单词。处理变化序列的一种常见技术是手动将每个数据张量填充到相同的形状,以形成一个批。

例如,我们有两个不同长度的句子和一个词汇表。为了将其表示为单个张量,我们将 0 填充到批中的最大长度。
简单说就是把图片都 padding 成最大的尺寸,padding 的方式就是补零,那么 batch 中的每一张图都有一个 mask 矩阵,在 img 有值的地方是 1,补零的地方是 0。

举个例子,下面两种构造方式其实是等价的,

python 复制代码
padded_sentences = torch.tensor([[1.0, 2.0, 0.0],
                                 [3.0, 4.0, 5.0]])
nested_sentences = torch.nested.nested_tensor([torch.tensor([1.0, 2.0]),
                                               torch.tensor([3.0, 4.0, 5.0])])

初始化 NestedTensor

我们可以从张量列表中创建 nestedtensor。我们将 nt[i] 表示为nestedtensor的第 i 个张量分量。

python 复制代码
nt = torch.nested.nested_tensor([torch.arange(12).reshape(
    2, 6), torch.arange(18).reshape(3, 6)], dtype=torch.float, device=device)

NestedTensor 操作

reshape

python 复制代码
nt_reshaped = nt.reshape(2, -1, 2, 3)

转置

python 复制代码
nt_transposed = nt_reshaped.transpose(1, 2)

查看维度

假设 features 为 NestedTensor 格式,直接运行 features[-1]. shape 则会报错 AttributeError: 'NestedTensor' object has no attribute 'Nested_Tensor',应该使用 features[-1]. tensors. shape

其他

其他操作具有与常规张量相同的语法。

python 复制代码
nt_mm = torch.nested.nested_tensor([torch.randn((2, 3, 4)), torch.randn((2, 3, 5))], device=device)
nt3 = torch.matmul(nt_transposed, nt_mm)
print(f"Result of Matmul:\n {nt3}")

nt4 = F.dropout(nt3, 0.1)
print(f"Result of Dropout:\n {nt4}")

nt5 = F.softmax(nt4, -1)
print(f"Result of Softmax:\n {nt5}")
相关推荐
TsingtaoAI39 分钟前
企业实训|自动驾驶中的图像处理与感知技术——某央企汽车集团
图像处理·人工智能·自动驾驶·集成学习
王哈哈^_^1 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
百锦再1 小时前
第18章 高级特征
android·java·开发语言·后端·python·rust·django
檐下翻书1731 小时前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
源码之家1 小时前
基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏 大数据毕业设计(附源码)✅
大数据·爬虫·python·随机森林·数据分析·spark·flask
SalvoGao2 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
楚疏笃2 小时前
纯Python 实现 Word 文档转换 Markdown
python·word
搬砖者(视觉算法工程师)3 小时前
自动驾驶汽车技术的工程原理与应用
人工智能·计算机视觉·自动驾驶
谅望者3 小时前
数据分析笔记08:Python编程基础-数据类型与变量
数据库·笔记·python·数据分析·概率论
CV实验室3 小时前
2025 | 哈工大&鹏城实验室等提出 Cascade HQP-DETR:仅用合成数据实现SOTA目标检测,突破虚实鸿沟!
人工智能·目标检测·计算机视觉·哈工大