【深度学习】NestedTensors

文章目录

NestedTensors

DETR 中常见的数据格式为 NestedTensors,那么什么是 NestedTensors 呢?

NestedTensor,包括 tensormask 两个成员,tensor 就是输入的图像。mask 跟 tensor 同高宽但是单通道。比如 masks 大小为 (1, 800, 1440),tensor 大小为 (1, 3, 800, 1440)。

Why NestedTensor

当数据是连续的时,通常情况下每个样本都有不同的长度。

例如,在一批句子中,每个句子都有不同数量的单词。处理变化序列的一种常见技术是手动将每个数据张量填充到相同的形状,以形成一个批。

例如,我们有两个不同长度的句子和一个词汇表。为了将其表示为单个张量,我们将 0 填充到批中的最大长度。
简单说就是把图片都 padding 成最大的尺寸,padding 的方式就是补零,那么 batch 中的每一张图都有一个 mask 矩阵,在 img 有值的地方是 1,补零的地方是 0。

举个例子,下面两种构造方式其实是等价的,

python 复制代码
padded_sentences = torch.tensor([[1.0, 2.0, 0.0],
                                 [3.0, 4.0, 5.0]])
nested_sentences = torch.nested.nested_tensor([torch.tensor([1.0, 2.0]),
                                               torch.tensor([3.0, 4.0, 5.0])])

初始化 NestedTensor

我们可以从张量列表中创建 nestedtensor。我们将 nt[i] 表示为nestedtensor的第 i 个张量分量。

python 复制代码
nt = torch.nested.nested_tensor([torch.arange(12).reshape(
    2, 6), torch.arange(18).reshape(3, 6)], dtype=torch.float, device=device)

NestedTensor 操作

reshape

python 复制代码
nt_reshaped = nt.reshape(2, -1, 2, 3)

转置

python 复制代码
nt_transposed = nt_reshaped.transpose(1, 2)

查看维度

假设 features 为 NestedTensor 格式,直接运行 features[-1]. shape 则会报错 AttributeError: 'NestedTensor' object has no attribute 'Nested_Tensor',应该使用 features[-1]. tensors. shape

其他

其他操作具有与常规张量相同的语法。

python 复制代码
nt_mm = torch.nested.nested_tensor([torch.randn((2, 3, 4)), torch.randn((2, 3, 5))], device=device)
nt3 = torch.matmul(nt_transposed, nt_mm)
print(f"Result of Matmul:\n {nt3}")

nt4 = F.dropout(nt3, 0.1)
print(f"Result of Dropout:\n {nt4}")

nt5 = F.softmax(nt4, -1)
print(f"Result of Softmax:\n {nt5}")
相关推荐
kaizq4 分钟前
AI-MCP-SQLite-SSE本地服务及CherryStudio便捷应用
python·sqlite·llm·sse·mcp·cherry studio·fastmcp
Hcoco_me11 分钟前
RNN(循环神经网络)
人工智能·rnn·深度学习
踏浪无痕18 分钟前
AI 时代架构师如何有效成长?
人工智能·后端·架构
AI 智能服务19 分钟前
第6课__本地工具调用(文件操作)
服务器·人工智能·windows·php
clorisqqq38 分钟前
人工智能现代方法笔记 第1章 绪论(1/2)
人工智能·笔记
kisshuan1239638 分钟前
YOLO11-RepHGNetV2实现甘蔗田杂草与作物区域识别详解
人工智能·计算机视觉·目标跟踪
焦耳热科技前沿44 分钟前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
C+-C资深大佬1 小时前
Creo 11.0 全功能解析:多体设计 + 仿真制造,机械设计效率翻倍下载安装
人工智能
浔川python社1 小时前
【维护期间重要提醒】请勿使用浔川 AI 翻译 v6.0 翻译违规内容
人工智能
CS创新实验室1 小时前
AI 与编程
人工智能·编程·编程语言