每周一算法:迭代加深A*

题目链接

AcWing 180. 排书

题目描述

给定 n n n 本书,编号为 1 ∼ n 1\sim n 1∼n。

在初始状态下,书是任意排列的。

在每一次操作中,可以抽取其中连续的一段,再把这段插入到其他某个位置。

我们的目标状态是把书按照 1 ∼ n 1\sim n 1∼n 的顺序依次排列。

求最少需要多少次操作。

输入格式

第一行包含整数 T T T,表示共有 T T T组测试数据。

每组数据包含两行,第一行为整数 n n n,表示书的数量。

第二行为 n n n个整数,表示 1 ∼ n 1\sim n 1∼n 的一种任意排列。

同行数之间用空格隔开。

输出格式

每组数据输出一个最少操作次数。

如果最少操作次数大于或等于 5 5 5次,则输出5 or more

每个结果占一行。

数据范围

1 ≤ n ≤ 15 1≤n≤15 1≤n≤15

输入样例

3
6
1 3 4 6 2 5
5
5 4 3 2 1
10
6 8 5 3 4 7 2 9 1 10

输出样例

2
3
5 or more

算法思想

根据题目描述,需要对 1 ∼ n 1\sim n 1∼n的一个排列,进行若干次操作,在每一次操作中,可以抽取序列中连续的一段,再把这段插入到其他某个位置。问最少经过几次操作,可以将序列变为按照 1 ∼ n 1\sim n 1∼n 的顺序依次排列。

先考虑每一次操作的决策数量:

  • 当从序列中抽取长度为 i i i的一段时,有 n − i + 1 n-i+1 n−i+1种选择。例如:对于长度 n = 6 n=6 n=6的序列中,抽取长度为 i = 3 i=3 i=3的连续一段,有 4 4 4种选择,如下图所示
  • 对于每种抽法,有 n − i n-i n−i种放法,即将长度为 i i i的一段插入其它 n − i n-i n−i个空中。例如:

那么每一步状态数量为 ( n − i ) × ( n − i + 1 ) (n-i)\times(n-i+1) (n−i)×(n−i+1),但将某一段向前移动,等价于将跳过的那段向后移动,因此每种移动方式被计算了两次,还要除以 2 2 2。所以状态空间的大小为 ∑ i = 1 n ( n − i ) × ( n − i + 1 ) / 2 ≤ ( 15 × 14 + 14 × 13 + . . . + 2 × 1 ) / 2 = 560 \sum_{i=1}^n(n-i)\times(n-i+1)/2\le(15\times14+14\times13+...+2\times1)/2=560 ∑i=1n(n−i)×(n−i+1)/2≤(15×14+14×13+...+2×1)/2=560。

考虑在 4 4 4步内找到答案,最多有 56 0 4 560^4 5604个状态,暴力搜索会超时。可以使用双向广搜或者迭代加深A*(IDA* )来优化。

迭代加深A*

A*算法算法中,将估价函数与优先队列BFS结合,提高了搜索效率。那么把估价函数与迭代加深的DFS结合就是迭代加深 A* \text{A*} A*( IDA* \text{IDA*} IDA*)。

迭代加深 A* \text{A*} A*要限定一个深度,在不超过该深度的前提下执行DFS,若找不到解,就扩大深度限制,重新进行搜索;除此之外,还要设计一个估价函数,估算从每个状态到目标状态需要的"步数"。与 A* \text{A*} A*算法一样,估价函数需要遵守"预计值不大于未来实际步数"的准则。

基本思想是以迭代加深DFS的搜索框架为基础,把原来简单的深度限制加强为:若当前深度+未来估计步数>深度限制,则立即从当前分支回溯

估价函数

IDA* \text{IDA*} IDA*的算法的关键在于设计估价函数,那么本题的估价函数如何设计?考虑对于目标状态,第 i i i本书后边应该是第 i + 1 i+1 i+1本书,那么认为 i + 1 i+1 i+1是 i i i的正确后继。

对于任意状态,考虑整个排列中错误的后继总数,将其记为tot,可以发现每次操作至多更改 3 3 3本数的后继,例如,将 346 346 346移动到 2 2 2的后面, 1 、 2 、 6 1、2、6 1、2、6的后继被更改,如下图所示:

也就是说,在最理想的情况下,每次操作都能把 3 3 3个错误后继全部该对,那么消除所有错误后继的操作次数也至少需要 ⌈ t o t 3 ⌉ \lceil\frac{tot}{3}\rceil ⌈3tot⌉次。

因此,可以把一个状态state的估价函数设计为 h ( s t a t e ) = ⌈ t o t 3 ⌉ h(state)=\lceil\frac{tot}{3}\rceil h(state)=⌈3tot⌉,其中tot表示在当前状态state下书的错误后继总数。

算法实现

基本思想是使用迭代加深的方法,从 1 ∼ 4 1\sim4 1∼4依次限制搜索深度,然后从起始状态出发进行DFS。对于当前状态:

  • 如果若当前步数+未来估计步数>深度限制,则搜索结束返回无解。
  • 如果到达最终状态,搜索结束返回有解。
  • 枚举要抽连续的一段的左右位置 [ L , R ] [L, R] [L,R],以及插入位置 i i i,将 [ L , R ] [L, R] [L,R]这一段插入到 i i i位置后
    • 继续搜索下一阶段的状态

代码实现

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
const int N = 20;
int n, q[N], b[5][N]; //备份数组
int h() //估价函数
{
    int tot = 0; //统计错误后继总数
    for(int i = 0; i + 1 < n; i ++)
        if(q[i] + 1 != q[i + 1]) tot ++;
    
    return (tot + 2) / 3; //总数÷3向上取整
}
bool check()
{
    for(int i = 0; i < n; i ++)
        if(q[i] != i + 1) return false;
    return true;
}
//当前步数k,限制深度depth
bool dfs(int k, int depth)
{
    if(k + h() > depth) return false; //当前步数+估计步数超过限制
    if(check()) return true;
    //枚举抽取的左右两端和插入位置
    for(int L = 0; L < n; L ++)
        for(int R = L; R < n; R ++)
            for(int i = R + 1; i < n; i ++) //注意只需要枚举后面的插入位置即可
            {
                memcpy(b[k], q, sizeof q); //备份,方便恢复现场
                int x, y;
                //将[R+1,i]位置上的数向前移动
                for(x = R + 1, y = L; x <= i; x ++, y ++) q[y] = b[k][x];
                //将[L,R]位置上的数,向后移动
                for(x = L; x <= R; x ++, y ++) q[y] = b[k][x];
                if(dfs(k + 1, depth)) return true;
                memcpy(q, b[k], sizeof q); //备份,方便恢复现场
            }
    return false;
}
int main()
{
    int T;
    cin >> T;
    while(T --)
    {
        cin >> n;
        for(int i = 0; i < n; i ++) cin >> q[i];
        int depth = 0;
        while(depth < 5 && !dfs(0, depth)) depth ++;
        if(depth >= 5) puts("5 or more");
        else cout << depth << '\n';
    }
    return 0;
}
相关推荐
Ritsu栗子16 分钟前
代码随想录算法训练营day35
c++·算法
好一点,更好一点25 分钟前
systemC示例
开发语言·c++·算法
卷卷的小趴菜学编程1 小时前
c++之List容器的模拟实现
服务器·c语言·开发语言·数据结构·c++·算法·list
年轮不改1 小时前
Qt基础项目篇——Qt版Word字处理软件
c++·qt
林开落L1 小时前
模拟算法习题篇
算法
玉蜉蝣1 小时前
PAT甲级-1014 Waiting in Line
c++·算法·队列·pat甲·银行排队问题
我真不会起名字啊1 小时前
“深入浅出”系列之算法篇:(2)openCV、openMV、openGL
算法
南宫生1 小时前
力扣动态规划-7【算法学习day.101】
java·数据结构·算法·leetcode·动态规划
spssau2 小时前
2025美赛倒计时,数学建模五类模型40+常用算法及算法手册汇总
算法·数学建模·数据分析·spssau
程序员一诺2 小时前
【深度学习】嘿马深度学习笔记第11篇:卷积神经网络,学习目标【附代码文档】
人工智能·python·深度学习·算法