保研复习概率论1

1.什么是随机试验(random trial)?

如果一个试验满足试验可以在相同的条件下重复进行试验所有可能结果明确可知(或者是可知这个范围) 、**每一次试验前会出现哪个结果事先并不确定,**那么试验称为随机试验。

2.什么是随机事件?

在一次试验中可能出现,也可能不出现的结果称为随机事件,简称事件。随机事件本质是一个事件集合,总是由若干个基本事件构成。

3.什么是样本空间(sample space)?

一次试验的可能结果称为样本点样本点组成的全体集合为样本空间。由一个样本点构成的事件称为基本事件。

4.什么是事件相容?

事件A与B相容就是说,事件A和事件B存在一些同时发生的事件 。事件互斥是说事件A与B不存在同时发生的事件。事件对立是指事件A不发生的事件称为事件A的逆事件或者对立事件。对立事件一定是互斥事件,但是互斥事件不一定是对立事件。

5.什么是完备事件组?

如果 (样本空间)并且,则称有限个事件构成一个完备事件组。

6.什么是概率(probability)?

描述性定义 :通常将事件A发生的可能性大小的度量称为事件A发生的概率,记为P(A)

统计性定义 :统计性定义提供一种用频率估计概率的方法,在相同条件下做重复试验,事件A出现的次数k和总的试验次数n之比k/n称为事件A在这n次试验中出现的频率。当n充分大时,频率将趋近于某个常数p,这个常数p就称为这个事件A的概率。

公理化定义 :设随机试验的样本空间为,如果对每一个事件A都有一个确定的实数P(A),且事件函数满足P(A)>=0,P()=1,可列可加性则称P(A)为A的概率。

7.什么是古典概型?

随机试验的样本空间满足(1)只有有限个样本点(基本事件)(2)每个样本点(基本事件)发生的可能性都一样。

8.什么是几何概型?

随机试验的样本空间满足(1)样本空间是一个可度量的有界区域(2)每个样本点发生的可能性都一样,即样本点落入的某一可度量的子区域S的可能性大小与S的集合度量成正比,而与S的位置及形状无关。

9.概率有哪些性质?

(1)有界性:对于任一事件A,有0<=P(A)<=1,且P(空)=0,P(A)=1

(2)单调性:设A、B是两个事件 ,如果B包含A,则有P(B)>=P(A)

10.概率的一些公式?

全概率公式用于计算,某个结果B发生的可能性大小,这个结果的发生与多个"原因"Ai相联系。贝叶斯公式是在"结果"B发生的条件下,探求这一结果发生的原因,即Ai发生的可能性大小。

11.什么是事件的独立性?

设A,B为两个事件,如果P(AB)=P(A)*P(B),则称A与B相互独立

12.什么是n重伯努利概型?

在同样条件下独立重复地进行n次完全相同独立的试验,即每次试验的结果以及可能发生的概率不变,每次试验只有两个结果A和,则这种模型称为n重伯努利模型。X表示n重伯努利概型中事件A发生的次数,则X服从二项分布B(n,p)。

13.什么是随机变量(random variable)?

表示随机试验各种结果 的实值单值函数,随机试验不论是否与数量相关都可以数量化即都能用数量化的方式表达。

14.什么是分布函数?

x是一个实数,X是一个随机变量,则称F(x)=P{X<=x}为随机变量X的分布函数,则称X服从F(x)分布。主要性质有:F(x)是单调不减函数,是右连续函数,负无穷=0且正无穷=1

15.什么是离散型随机变量?

如果随机变量X只可能取有限个或可列无限个值x1,x2,x3...,则称x为离散型随机变量。

16.什么是连续型随机变量?

一个随机变量X的概率分布能被一个非负函数fX(称之为概率密度函数 probablility density function PDF)描述,满足

fX>=0,对fX在负无穷到正无穷上积分=1。对任意实数c有P{X=c}=0。

概率的几何意义 :对于连续型随机变量落入某一区间的概率即{a<X<b}等于该区间上概率密度曲线下曲边梯形的面积。

17.有哪些离散型变量的分布?

  • Bernoulli 0-1分布B(1,p):概率分布为P{X=1}=p,P{X=0}=1-p,则称X服从参数为p的0-1分布。
  • BinomialDistribution 二项分布B(n,p):概率分布为 ,则称X服从参数为(n,p)的二项分布。
  • Poissondistribution泊松分布P(λ) :概率分布为
  • 注意:当n>=20,p<=0.05时,可以用泊松近似公式λ=np逼近二项分布。
  • Geometric distribution几何分布: 概率分布为,则称X服从参数为p的几何分布。
  • HypergeometricDistribution超几何分布: 概率分布为 ,则称X服从参数为(n,N,M)的超几何分布。

18.有哪些连续型变量的分布?

  • **UniformDIstribution均匀分布U(a,b):**如果随机变量X的概率密度函数,分布函数如下图所示。则称X在区间(a,b)上服从均匀分布。

  • ExponentialDistribution指数分布:如果X的概率密度和分布函数分别为如下函数,则称X服从参数为λ的指数分布。

  • Uniform Distribution正态分布 :如果X的概率密度函数为下图,那么说X服从的正态分布。

服从(0,1)的正态分布称为标准正态分布。

相关推荐
Researcher-Du8 小时前
随机采样之接受拒绝采样
概率论
无水先生1 天前
ML 系列:机器学习和深度学习的深层次总结( 19)— PMF、PDF、平均值、方差、标准差
概率论
无水先生1 天前
ML 系列:机器学习和深度学习的深层次总结( 20)— 离散概率分布 (Bernoulli 分布)
概率论
卡洛驰2 天前
交叉熵损失函数详解
人工智能·深度学习·算法·机器学习·ai·分类·概率论
Ricciflows3 天前
分析学大师Elias M. Stein的分析系列教材
线性代数·数学建模·矩阵·概率论·抽象代数·拓扑学·傅立叶分析
乔大将军3 天前
数理统计(第4章第2节:2元方差分析)
概率论
爱代码的小黄人6 天前
数学期望和联合概率密度
概率论
VisionX Lab6 天前
视频批量裁剪工具
音视频·概率论
无水先生6 天前
ML 系列:第 18 部 - 高级概率论:条件概率、随机变量和概率分布
概率论
AnitasCat7 天前
VAE原理及代码实现
人工智能·机器学习·概率论