语音识别教程:Whisper

语音识别教程:Whisper

一、前言

最近看国外教学视频的需求,有些不是很适应,找了找AI字幕效果也不是很好,遂打算基于Whisper和GPT做一个AI字幕给自己。

二、具体步骤

1、安装FFmpeg

Windows:

  1. 进入 https://github.com/BtbN/FFmpeg-Builds/releases,点击 windows版本的FFMPEG对应的图标,进入下载界面点击 download 下载按钮。

  2. 解压下载好的zip文件到指定目录(放到你喜欢的位置)

  3. 将解压后的文件目录中 bin 目录(包含 ffmpeg.exe )添加进 path 环境变量中

  4. DOS 命令行输入 ffmpeg -version, 出现以下界面说明安装完成:

2、安装Whisper模型

运行以下程序,会自动安装Whisper-small的模型,并识别音频audio.mp3 输出识别到的文本。(如果没有科学上网的手段请手动下载)

python 复制代码
import whisper
model = whisper.load_model("small")
result = model.transcribe("audio.mp3")
print(result["text"])

运行结果如下

三、其他

实时录制音频并转录

python 复制代码
import pyaudio
import wave
import numpy as np
from pydub import AudioSegment
from audioHandle import addAudio_volume,calculate_volume
from faster_whisper import WhisperModel

model_size = "large-v3"

# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")

def GetIndex():
    p = pyaudio.PyAudio()
    # 要找查的设备名称中的关键字
    target = '立体声混音'
    for i in range(p.get_device_count()):
        devInfo = p.get_device_info_by_index(i)
        # if devInfo['hostApi'] == 0:
        if devInfo['name'].find(target) >= 0 and devInfo['hostApi'] == 0:
            print(devInfo)
            print(devInfo['index'])
            return devInfo['index']
    return -1
# 配置
FORMAT = pyaudio.paInt16  # 数据格式
CHANNELS = 1 # 声道数
RATE = 16000  # 采样率
CHUNK = 1024  # 数据块大小
RECORD_SECONDS = 5  # 录制时长
WAVE_OUTPUT_FILENAME = "output3.wav"  # 输出文件
DEVICE_INDEX = GetIndex() # 设备索引,请根据您的系统声音设备进行替换
if DEVICE_INDEX==-1:
    print('请打开立体声混音')
audio = pyaudio.PyAudio()

# 开始录制
stream = audio.open(format=FORMAT, channels=CHANNELS,
                    rate=RATE, input=True,
                    frames_per_buffer=CHUNK, input_device_index=DEVICE_INDEX)
data = stream.read(CHUNK)
print("recording...")

frames = []

moreDatas=[]
maxcount=3
count=0
while True:
    # 初始化一个空的缓冲区

    datas = []
    for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):

        data = stream.read(CHUNK)

        audio_data = np.frombuffer(data, dtype=np.int16)
        datas.append(data)


        # 计算音频的平均绝对值
        volume = np.mean(np.abs(audio_data))
        # 将音量级别打印出来
        print("音量级别:", volume)
    moreDatas.append(datas)

    if len(moreDatas)>maxcount:
        moreDatas.pop(0)
    newDatas=[i for j in moreDatas for i in j]
    buffers=b''
    for buffer in newDatas:
        buffers+=buffer

    print('开始识别')
    buffers=np.frombuffer(buffers, dtype=np.int16)
   # a = np.ndarray(buffer=np.array(datas), dtype=np.int16, shape=(CHUNK,))
    segments, info = model.transcribe(np.array(buffers), language="en")
    text=''
    for segment in segments:
        print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
        text+=segment.text
    print(text)
print("finished recording")

# 停止录制
stream.stop_stream()
stream.close()
audio.terminate()

# 保存录音
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(audio.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
wf.close()


#addAudio_volume(WAVE_OUTPUT_FILENAME)
相关推荐
aneasystone本尊8 分钟前
学习 Coze Studio 的知识库入库逻辑
人工智能
然我9 分钟前
从 “只会聊天” 到 “能办实事”:OpenAI Function Call 彻底重构 AI 交互逻辑(附完整接入指南)
前端·javascript·人工智能
岁月宁静16 分钟前
软件开发核心流程全景解析 —— 基于 AI 多模态项目实践
前端·人工智能·后端
wangjiaocheng17 分钟前
软件功能分解输入处理输出递归嵌套模型
人工智能
G等你下课17 分钟前
Function call
前端·人工智能
岁月宁静18 分钟前
MCP 协议应用场景 —— Cursor 连接 Master Go AI
前端·vue.js·人工智能
柠檬味拥抱20 分钟前
融合NLU与NLG的AI Agent语言交互机制研究
人工智能
wydaicls24 分钟前
用函数实现方程函数解题
人工智能·算法·机器学习
努力当一个优秀的程序员31 分钟前
3.逻辑回归:从分类到正则化
人工智能·机器学习
小沈熬夜秃头中୧⍤⃝1 小时前
IOPaint 远程修图:cpolar 内网穿透服务实现跨设备图片编辑
人工智能