机器学习_聚类(Clustering)

文章目录

简介

你经常跟哪些人联系,而这些人又经常给哪些人发邮件,由此找到关系密切的人群。因此,这可能需要另一个聚类算法,你希望用它发现社交网络中关系密切的朋友。

K-均值算法(K_Means)

c 复制代码
K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。
K-均值是一个迭代算法,假设我们想要将数据聚类成 n 个组,其方法为:
首先选择𝐾个随机的点,称为聚类中心(cluster centroids);
对于数据集中的每一个数据,按照距离𝐾个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类。
计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。

K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为:

当人们在讨论,选择聚类数目的方法时,有一个可能会谈及的方法叫作"肘部法则"。关于"肘部法则",我们所需要做的是改变𝐾值,也就是聚类类别数目的总数。我们用一个聚类来运行 K 均值聚类方法。这就意味着,所有的数据都会分到一个聚类里,然后计算成本函数或者计算畸变函数𝐽。𝐾代表聚类数字。

相关推荐
山顶夕景14 分钟前
【ML】机器学习中常见的25个数学公式
人工智能·数学·机器学习
Crossoads16 分钟前
【汇编语言】外中断(一)—— 外中断的魔法:PC机键盘如何触发计算机响应
android·开发语言·数据库·深度学习·机器学习·计算机外设·汇编语言
Zik----18 分钟前
Anaconda搭建Python虚拟环境并在Pycharm中配置(小白也能懂)
开发语言·人工智能·python·机器学习·pycharm
凡人的AI工具箱35 分钟前
每天40分玩转Django:Django缓存
数据库·人工智能·后端·python·缓存·django
Hoper.J43 分钟前
微调 BERT:实现抽取式问答
人工智能·深度学习·自然语言处理·llm·bert
PeterClerk1 小时前
NLP基础知识 - 向量化
人工智能·自然语言处理
热爱生活的五柒1 小时前
自然语言处理(NLP)中的事件检测和事件抽取
人工智能·自然语言处理
开出南方的花1 小时前
BiLSTM+CRF实现NLP中的NER任务
人工智能·pytorch·自然语言处理·nlp·ner·条件随机场
AI敲代码的手套1 小时前
解读目前AI就业岗位——大语言模型(LLM)应用工程师学习路线、就业前景及岗位全解析
人工智能·学习·语言模型
EnochChen_1 小时前
六大基础深度神经网络之CNN
人工智能·神经网络