目录

SVM支持向量机

支持向量机(Support Vector Machine,简称SVM)是一种用于分类和回归分析的监督学习模型。它的基本原理是找到一个最优的超平面来划分不同类别的数据点,使得不同类别的数据点能够被有效地分开,并且具有最大的间隔(margin),同时尽可能地避免分类错误。

以下是支持向量机的基本原理:

超平面:

在二维空间中,超平面是一条直线;在三维空间中,超平面是一个平面;在更高维度的空间中,超平面是一个超平面。对于二分类问题,超平面可以将特征空间划分为两个部分,每个部分代表一个类别。

间隔:

SVM的目标是找到一个超平面,使得样本点到这个超平面的距离(即间隔)尽可能大。间隔被定义为离超平面最近的训练样本点到超平面的距离,SVM要求这个间隔最大化。

支持向量:

支持向量是距离超平面最近的那些样本点,它们决定了超平面的位置。在训练过程中,只有支持向量才会对超平面的位置产生影响。

核函数:

在实际问题中,数据可能不是线性可分的,这时就需要使用核函数将数据映射到高维空间中,使其在高维空间中线性可分。常用的核函数有线性核函数、多项式核函数、径向基函数(RBF)核函数等。

优化问题:

SVM的训练过程可以被形式化为一个凸优化问题,即在约束条件下最小化损失函数。通常采用的是拉格朗日对偶性与KKT条件来求解这个优化问题,得到最优的超平面和支持向量。

软间隔与正则化:

在现实问题中,数据往往是有噪音的,或者不可避免地存在一些异常点。为了提高模型的泛化能力,引入了软间隔(soft margin)和正则化(regularization)的概念。软间隔允许一些样本点出现在间隔边界之内,正则化则通过惩罚模型的复杂度来防止过拟合。

总的来说,支持向量机通过寻找一个最优的超平面来将不同类别的样本点分开,使得间隔最大化,从而实现对数据的有效分类。其优点包括对高维空间数据的处理能力强、泛化能力强等。然而,在处理大规模数据集时,训练时间可能较长,而且对于核函数的选择需要一定的经验。

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
胖哥真不错1 小时前
Python实现NOA星雀优化算法优化随机森林回归模型项目实战
python·机器学习·项目实战·随机森林回归模型·noa星雀优化算法
daily_23331 小时前
coding ability 展开第九幕(位运算——进阶篇)超详细!!!!
算法·位运算
柏木乃一1 小时前
双向链表增删改查的模拟实现
开发语言·数据结构·算法·链表
whltaoin3 小时前
Java实现N皇后问题的双路径探索:递归回溯与迭代回溯算法详解
java·算法
梭七y5 小时前
【力扣hot100题】(032)排序链表
算法·leetcode·链表
SsummerC5 小时前
【leetcode100】数组中的第K个最大元素
python·算法·leetcode
编程绿豆侠5 小时前
力扣HOT100之链表:206. 反转链表
算法·leetcode·链表
永恒迷星.by6 小时前
文件操作(c语言)
c语言·c++·算法·文件操作
还有你Y6 小时前
MIMO预编码与检测算法的对比
算法·预编码算法
凯强同学6 小时前
第十四届蓝桥杯大赛软件赛省赛Python 大学 C 组:7.翻转
python·算法·蓝桥杯