SVM支持向量机

支持向量机(Support Vector Machine,简称SVM)是一种用于分类和回归分析的监督学习模型。它的基本原理是找到一个最优的超平面来划分不同类别的数据点,使得不同类别的数据点能够被有效地分开,并且具有最大的间隔(margin),同时尽可能地避免分类错误。

以下是支持向量机的基本原理:

超平面:

在二维空间中,超平面是一条直线;在三维空间中,超平面是一个平面;在更高维度的空间中,超平面是一个超平面。对于二分类问题,超平面可以将特征空间划分为两个部分,每个部分代表一个类别。

间隔:

SVM的目标是找到一个超平面,使得样本点到这个超平面的距离(即间隔)尽可能大。间隔被定义为离超平面最近的训练样本点到超平面的距离,SVM要求这个间隔最大化。

支持向量:

支持向量是距离超平面最近的那些样本点,它们决定了超平面的位置。在训练过程中,只有支持向量才会对超平面的位置产生影响。

核函数:

在实际问题中,数据可能不是线性可分的,这时就需要使用核函数将数据映射到高维空间中,使其在高维空间中线性可分。常用的核函数有线性核函数、多项式核函数、径向基函数(RBF)核函数等。

优化问题:

SVM的训练过程可以被形式化为一个凸优化问题,即在约束条件下最小化损失函数。通常采用的是拉格朗日对偶性与KKT条件来求解这个优化问题,得到最优的超平面和支持向量。

软间隔与正则化:

在现实问题中,数据往往是有噪音的,或者不可避免地存在一些异常点。为了提高模型的泛化能力,引入了软间隔(soft margin)和正则化(regularization)的概念。软间隔允许一些样本点出现在间隔边界之内,正则化则通过惩罚模型的复杂度来防止过拟合。

总的来说,支持向量机通过寻找一个最优的超平面来将不同类别的样本点分开,使得间隔最大化,从而实现对数据的有效分类。其优点包括对高维空间数据的处理能力强、泛化能力强等。然而,在处理大规模数据集时,训练时间可能较长,而且对于核函数的选择需要一定的经验。

相关推荐
小天才才1 小时前
【自然语言处理】大模型时代的数据标注(主动学习)
人工智能·机器学习·语言模型·自然语言处理
Magnum Lehar1 小时前
vulkan游戏引擎test_manager实现
java·算法·游戏引擎
苏苏susuus1 小时前
机器学习:集成学习概念和分类、随机森林、Adaboost、GBDT
机器学习·分类·集成学习
水蓝烟雨2 小时前
[面试精选] 0094. 二叉树的中序遍历
算法·面试精选
超闻逸事2 小时前
【题解】[UTPC2024] C.Card Deck
c++·算法
databook2 小时前
当机器学习遇见压缩感知:用少量数据重建完整世界
python·机器学习·scikit-learn
暴力求解2 小时前
C++类和对象(上)
开发语言·c++·算法
JKHaaa2 小时前
几种简单的排序算法(C语言)
c语言·算法·排序算法
让我们一起加油好吗2 小时前
【基础算法】枚举(普通枚举、二进制枚举)
开发语言·c++·算法·二进制·枚举·位运算
FogLetter2 小时前
微信红包算法揭秘:从随机性到产品思维的完美结合
算法