SVM支持向量机

支持向量机(Support Vector Machine,简称SVM)是一种用于分类和回归分析的监督学习模型。它的基本原理是找到一个最优的超平面来划分不同类别的数据点,使得不同类别的数据点能够被有效地分开,并且具有最大的间隔(margin),同时尽可能地避免分类错误。

以下是支持向量机的基本原理:

超平面:

在二维空间中,超平面是一条直线;在三维空间中,超平面是一个平面;在更高维度的空间中,超平面是一个超平面。对于二分类问题,超平面可以将特征空间划分为两个部分,每个部分代表一个类别。

间隔:

SVM的目标是找到一个超平面,使得样本点到这个超平面的距离(即间隔)尽可能大。间隔被定义为离超平面最近的训练样本点到超平面的距离,SVM要求这个间隔最大化。

支持向量:

支持向量是距离超平面最近的那些样本点,它们决定了超平面的位置。在训练过程中,只有支持向量才会对超平面的位置产生影响。

核函数:

在实际问题中,数据可能不是线性可分的,这时就需要使用核函数将数据映射到高维空间中,使其在高维空间中线性可分。常用的核函数有线性核函数、多项式核函数、径向基函数(RBF)核函数等。

优化问题:

SVM的训练过程可以被形式化为一个凸优化问题,即在约束条件下最小化损失函数。通常采用的是拉格朗日对偶性与KKT条件来求解这个优化问题,得到最优的超平面和支持向量。

软间隔与正则化:

在现实问题中,数据往往是有噪音的,或者不可避免地存在一些异常点。为了提高模型的泛化能力,引入了软间隔(soft margin)和正则化(regularization)的概念。软间隔允许一些样本点出现在间隔边界之内,正则化则通过惩罚模型的复杂度来防止过拟合。

总的来说,支持向量机通过寻找一个最优的超平面来将不同类别的样本点分开,使得间隔最大化,从而实现对数据的有效分类。其优点包括对高维空间数据的处理能力强、泛化能力强等。然而,在处理大规模数据集时,训练时间可能较长,而且对于核函数的选择需要一定的经验。

相关推荐
Brookty18 分钟前
【算法】双指针(二)复写零
学习·算法
胖达不服输34 分钟前
「日拱一码」081 机器学习——梯度增强特征选择GBFS
人工智能·python·算法·机器学习·梯度增强特征选择·gbfs
初级炼丹师(爱说实话版)1 小时前
2025算法八股——深度学习——优化器小结
人工智能·深度学习·算法
AI算法工程师Moxi1 小时前
人工智能在医学图像中的应用:从机器学习到深度学习
人工智能·深度学习·机器学习
努力的小帅1 小时前
C++_哈希
开发语言·c++·学习·算法·哈希算法·散列表
Billy_Zuo1 小时前
人工智能机器学习——聚类
人工智能·机器学习·聚类
Christo32 小时前
TFS-2023《Fuzzy Clustering With Knowledge Extraction and Granulation》
人工智能·算法·机器学习·支持向量机
过河卒_zh15667662 小时前
AI内容标识新规实施后,大厂AI用户协议有何变化?(二)百度系
人工智能·算法·aigc·算法备案·生成合成类算法备案
zzZ65652 小时前
支持向量机(SVM)学习报告
学习·机器学习·支持向量机
薰衣草23332 小时前
滑动窗口(2)——不定长
python·算法·leetcode