卷积神经网络基础

卷积层

1.可参考此文章: https://blog.csdn.net/tjlakewalker/article/details/83275322
2.实现代码:

python 复制代码
import torch.nn as nn
conv = nn.Conv2d(in_channels=3,   #输入通道
                 out_channels=64, #输出通道
                 kernel_size=3,   #卷积核
                 stride=1)        #步长
print(conv)
# 结果:Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))

3.输出矩阵的大小计算公式

python 复制代码
W:输入矩阵边长  F:过滤器边长  P:填充数  S:步长
输出的正方形矩阵边长:(W-F+2P)/S+1

反卷积

简单地说就是卷积的反向操作

pytorch中有两种反卷积方法

1.双线性插值上采样:

python 复制代码
import torch.nn as nn
bilinear_layer = nn.UpsamplingBilinear2d(size = None,             #期望的输出尺寸
                                         scale_factor = None)     #缩放因子:决定缩放的大小                                         

2.转置卷积

python 复制代码
import torch.nn as nn
transpose_conv = nn.ConvTranspose2d(in_channels = None,    #输入通道
                                    out_channels = None,   #输出通道
                                    kernel_size = None,    #卷积核
                                    stride = None,         #步长
                                    padding = None)       #填充数                              

转置卷积是通过学习的方式,即在训练中更新卷积核的参数,完成上采样,其计算结果更具鲁棒性,缺点是会增加模型的训练时间和训练参数;其代码比卷积层代码仅多了一个填充参数,其余参数不变

池化层

1.最大池化

python 复制代码
import torch.nn as nn
maxpool_layer = nn.MaxPool2d(kernel_size = None,    #卷积核
                             stride = None,         #步长
                             padding = None,        #填充数
                             dilation = None,       #膨胀数
                             return_indices = None, #是否返回元素的位置信息
                             ceil_mode=None)        #是否向上取整

2.平均池化

python 复制代码
import torch.nn as nn
average_layer = nn.AvgPool2d(kernel_size = None,        #卷积核
                             stride = None,             #步长
                             padding = None,            #填充数
                             ceil_mode=None)            #是否向上取整

3.Mixed pooling
4.Stochastic Pooling

特点:

1.池化层是对输入的特征图进行压缩

2.池化层可以使特征图变小简化计算

3.池化不断抽取局部区域的特征,但不关心区域的位置,目标位置在较小的移动之后扔保持相同的结果,在一定程度上可以增加了平移不变性

正则化层

全称Batch Normalization(BN),就是归一化处理

好处:减轻对初始数据的依赖;加速训练,学习率可以设置更高

坏处:一来batch的大小,batch不同,方差和均值的计算不稳定。------>BN层不适合batch较小的场景,也不适合RNN(RNN是动态网络结构,batch有长有短),只适合batch较大的场景

python 复制代码
import torch.nn as nn
conv = nn.Conv2d(in_channels=3,   #输入通道
                 out_channels=64, #输出通道
                 kernel_size=3,   #卷积核
                 stride=1)        #步长
BN = nn.BatchNorm2d(64)           #BN层参数紧跟卷积层的输出参数

全连接层

python 复制代码
import torch.nn as nn
linear = nn.Linear(in_features=None,   #输入通道数
                   out_features=None)  #输出通道数:一般是输出类别数

当特征图纬度过大时,可以通过几个全连接层完成降纬,最后一个全连接层的输出通道为最终的分类类别:

python 复制代码
import torch.nn as nn
linear_1 = nn.Linear(2048,512)  #通过两个全连接层由2048降至5
linear_2 = nn.Linear(512,5)  

代码参数含义可以参考torch中文社区查找

https://pytorch-cn.readthedocs.io/zh/latest/

相关推荐
CelestialYuxin3 分钟前
【微论文】机器人第一性原理:技术演进的本构逻辑与实现路径
深度学习·机器人·硬件架构
阿杰学AI1 小时前
AI核心知识86——大语言模型之 Superalignment(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·超级对齐·superalignment·#ai安全
阿杰学AI1 小时前
AI核心知识85——大语言模型之 RLAIF(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·aigc·rlaihf·基于ai反馈的强化学习
Coco恺撒1 小时前
【脑机接口】难在哪里,【人工智能】如何破局(2.研发篇)
人工智能·深度学习·开源·人机交互·脑机接口
vlln1 小时前
【论文速读】达尔文哥德尔机 (Darwin Gödel Machine): 自进化智能体的开放式演化
人工智能·深度学习·ai agent
JicasdC123asd1 小时前
使用Faster R-CNN模型训练汽车品牌与型号检测数据集 改进C4结构 优化汽车识别系统 多类别检测 VOC格式
r语言·cnn·汽车
机器学习之心2 小时前
基于CNN-GRU(卷积神经网络-门控循环单元)的多变量负荷预测模型MATLAB代码
matlab·cnn·gru
爱吃泡芙的小白白2 小时前
深入浅出:卷积神经网络(CNN)池化层全解析——从MaxPool到前沿发展
人工智能·神经网络·cnn·池化层·最大值池化·平均值池化
Niuguangshuo3 小时前
DALL-E 2:从CLIP潜变量到高质量图像生成的突破
人工智能·深度学习·transformer