论文阅读:Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models

Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models

论文链接
代码链接

这篇文章提出了Forget-Me-Not (FMN),用来消除文生图扩散模型中的特定内容。FMN的流程图如下:

可以看到,FMN的损失函数是最小化要消除的概念对应的attention map的 L 2 L_2 L2范数。这里需要补充一些关于diffusion model的知识。

首先,以Stable Diffusion为代表的模型使用U-Net对图片的低维嵌入进行建模。文本条件在被CLIP的text encoder编码为文本嵌入后,通过U-Net中的cross-attention layers输入到U-Net中。cross-attention层的具体映射过程是一个QKV (Query-Key-

Value)结构,如上图的中间所示。其中,Q代表图片的视觉信息,K和V都是文本嵌入经过线性层后计算得到的( k i = W k c i a n d v i = W v c i k_i = W_kc_i~and~v_i = W_vc_i ki=Wkci and vi=Wvci)。而FMN损失函数中的attention map的计算过程如下:

然而,attention map还不是cross attention层的输出,其输出通过以下公式计算:

上面两个公式,也就是图3中间方框中的内容,可以用下面的公式概括,

从FMN的源码中可以看到对应的部分如下:

python 复制代码
class AttnController:
        def __init__(self) -> None:
            self.attn_probs = []
            self.logs = []
        def __call__(self, attn_prob, m_name) -> Any:
            bs, _ = self.concept_positions.shape
            head_num = attn_prob.shape[0] // bs
            target_attns = attn_prob.masked_select(self.concept_positions[:,None,:].repeat(head_num, 1, 1)).reshape(-1, self.concept_positions[0].sum())
            self.attn_probs.append(target_attns)
            self.logs.append(m_name)
        def set_concept_positions(self, concept_positions):
            self.concept_positions = concept_positions
        def loss(self):
            return torch.cat(self.attn_probs).norm()
        def zero_attn_probs(self):
            self.attn_probs = []
            self.logs = []
            self.concept_positions = None
相关推荐
xiaoli23272 分钟前
DBConformer论文泛读
论文阅读
蓝田生玉1231 小时前
PLUTO论文阅读笔记
论文阅读·笔记
得一录1 小时前
React Native智能家居摄像头模块深度解析:直播、回放与告警的技术实现
人工智能·物联网·aigc
avi911114 小时前
Unity毛玻璃渲染模糊渲染Shader数学入门
unity·aigc·图形学·shader·hlsl
m0_6501082414 小时前
AD-GS:面向自监督自动驾驶场景的目标感知 B 样条高斯 splatting 技术
论文阅读·人工智能·自动驾驶·基于高斯泼溅的自监督框架·高质量场景渲染
imbackneverdie19 小时前
如何通过读文献寻找科研思路?
人工智能·ai·自然语言处理·aigc·ai写作·ai读文献
静听松涛13321 小时前
门诊患者分诊引导流程图设计模板
大数据·论文阅读·人工智能·信息可视化·流程图·健康医疗
TOPGUS1 天前
谷歌将移除部分搜索功能:面对AI时代的一次功能精简策略
前端·人工智能·搜索引擎·aigc·seo·数字营销
avi91111 天前
简单的Gradio实现一个统计界面+日志输出
python·aigc·gradio
aitoolhub1 天前
自媒体视觉物料高效创作新路径:稿定设计如何用AI重构内容生产逻辑
大数据·人工智能·aigc·媒体