论文阅读:Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models

Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models

论文链接
代码链接

这篇文章提出了Forget-Me-Not (FMN),用来消除文生图扩散模型中的特定内容。FMN的流程图如下:

可以看到,FMN的损失函数是最小化要消除的概念对应的attention map的 L 2 L_2 L2范数。这里需要补充一些关于diffusion model的知识。

首先,以Stable Diffusion为代表的模型使用U-Net对图片的低维嵌入进行建模。文本条件在被CLIP的text encoder编码为文本嵌入后,通过U-Net中的cross-attention layers输入到U-Net中。cross-attention层的具体映射过程是一个QKV (Query-Key-

Value)结构,如上图的中间所示。其中,Q代表图片的视觉信息,K和V都是文本嵌入经过线性层后计算得到的( k i = W k c i a n d v i = W v c i k_i = W_kc_i~and~v_i = W_vc_i ki=Wkci and vi=Wvci)。而FMN损失函数中的attention map的计算过程如下:

然而,attention map还不是cross attention层的输出,其输出通过以下公式计算:

上面两个公式,也就是图3中间方框中的内容,可以用下面的公式概括,

从FMN的源码中可以看到对应的部分如下:

python 复制代码
class AttnController:
        def __init__(self) -> None:
            self.attn_probs = []
            self.logs = []
        def __call__(self, attn_prob, m_name) -> Any:
            bs, _ = self.concept_positions.shape
            head_num = attn_prob.shape[0] // bs
            target_attns = attn_prob.masked_select(self.concept_positions[:,None,:].repeat(head_num, 1, 1)).reshape(-1, self.concept_positions[0].sum())
            self.attn_probs.append(target_attns)
            self.logs.append(m_name)
        def set_concept_positions(self, concept_positions):
            self.concept_positions = concept_positions
        def loss(self):
            return torch.cat(self.attn_probs).norm()
        def zero_attn_probs(self):
            self.attn_probs = []
            self.logs = []
            self.concept_positions = None
相关推荐
MorleyOlsen2 小时前
【经典论文阅读】NeRF(神经辐射场,neural radiance fields)
论文阅读·nerf
夏沫的梦17 小时前
生成式AI对产业的影响与冲击
人工智能·aigc
敲上瘾1 天前
操作系统的理解
linux·运维·服务器·c++·大模型·操作系统·aigc
何大春1 天前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
想成为高手4991 天前
生成式AI在教育技术中的应用:变革与创新
人工智能·aigc
z千鑫2 天前
【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南
人工智能·pytorch·深度学习·aigc·tensorflow·keras·codemoss
程序员X小鹿2 天前
AI视频自动剪辑神器!点赞上万的影视剧片段,一键全自动剪辑,效率提升80%!(附保姆级教程)
aigc
yuzhangfeng2 天前
【 模型】 开源图像模型Stable Diffusion入门手册
stable diffusion
学习前端的小z2 天前
【AIGC】如何准确引导ChatGPT,实现精细化GPTs指令生成
人工智能·gpt·chatgpt·aigc
刘悦的技术博客3 天前
MagicQuill,AI动态图像元素修改,AI绘图,需要40G的本地硬盘空间,12G显存可玩,Win11本地部署
ai·aigc·python3.11