吴恩达机器学习笔记 二十六 决策树学习过程 独热编码one-hot

决策树的学习过程

  1. 所有样本都在根结点

2.计算所有可能的特征的信息增益,选择信息增益最大的那个

3.根据选择的特征分离数据集,创造左右两支子树

4.继续进行分裂直到达到停止标准。停止标准有:一个节点只有一类样本;分裂一个节点会导致树的深度超过最大值;从新的分裂得到的信息增益低于一个阈值;一个节点中的样本数低于一个阈值。

决策树可以看做一个**递归(recursive)**的过程

独热编码one-hot

例如猫狗分类,原本耳朵形状这个特征有三个可能的取值,采用独热编码的方式创建三个新的特征,每个特征只有两种情况(0或1) ,每个特征恰好有一个是1,所以叫独热。也可以推广到其他特征,用0或1来表示特征,可以将数字作为神经网络的输入。

相关推荐
臭东西的学习笔记1 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
夜流冰2 小时前
Motor - 电机扭矩和电机大小的关系
笔记
AI视觉网奇2 小时前
LiveTalking 部署笔记
笔记
倘若猫爱上鱼3 小时前
关于系统能检测到固态可移动硬盘(或U盘),系统资源管理器却始终无法扫描到固态可移动硬盘(或U盘)的解决办法
笔记
求真求知的糖葫芦3 小时前
巴伦学习(一)一种新型补偿传输线巴伦论文学习笔记(自用)
笔记·学习·射频工程
GLDbalala4 小时前
GPU PRO 4 - 5.3 A Pipeline for Authored Structural Damage 笔记
笔记
轴测君4 小时前
SE Block(Squeeze and Excitation Block)
深度学习·机器学习·计算机视觉
三伏5225 小时前
Cortex-M3重启流程——笔记
笔记·cortex-m3
wjykp5 小时前
6.频谱分析和时谱分析
人工智能·机器学习
方见华Richard5 小时前
方见华:在递归的暗夜里,把自己活成一束光
人工智能·经验分享·笔记·学习方法·空间计算