吴恩达机器学习笔记 二十六 决策树学习过程 独热编码one-hot

决策树的学习过程

  1. 所有样本都在根结点

2.计算所有可能的特征的信息增益,选择信息增益最大的那个

3.根据选择的特征分离数据集,创造左右两支子树

4.继续进行分裂直到达到停止标准。停止标准有:一个节点只有一类样本;分裂一个节点会导致树的深度超过最大值;从新的分裂得到的信息增益低于一个阈值;一个节点中的样本数低于一个阈值。

决策树可以看做一个**递归(recursive)**的过程

独热编码one-hot

例如猫狗分类,原本耳朵形状这个特征有三个可能的取值,采用独热编码的方式创建三个新的特征,每个特征只有两种情况(0或1) ,每个特征恰好有一个是1,所以叫独热。也可以推广到其他特征,用0或1来表示特征,可以将数字作为神经网络的输入。

相关推荐
2401_876907521 小时前
Python基础笔记
笔记
风已经起了1 小时前
FPGA学习笔记——IIC协议简介
笔记·学习·fpga开发
牧子与羊1 小时前
自学中医笔记(二)
笔记
lingggggaaaa1 小时前
小迪安全v2023学习笔记(六十二讲)—— PHP框架反序列化
笔记·学习·安全·web安全·网络安全·php·反序列化
我们从未走散3 小时前
JVM学习笔记-----StringTable
jvm·笔记·学习
胡萝卜3.03 小时前
数据结构初阶:排序算法(一)插入排序、选择排序
数据结构·笔记·学习·算法·排序算法·学习方法
.银河系.4 小时前
8.18 机器学习-决策树(1)
人工智能·决策树·机器学习
若天明5 小时前
深度学习-计算机视觉-微调 Fine-tune
人工智能·python·深度学习·机器学习·计算机视觉·ai·cnn
wwww.bo6 小时前
机器学习(决策树)
算法·决策树·机器学习
辞--忧6 小时前
深入浅出决策树
算法·决策树·机器学习