实践| RisingWave + ClickHouse =强大的实时数据分析组合

随着各种事件型数据呈现出指数级增长,实时分析越来越重要。然而,实时分析究竟是什么?它仅仅是更快的数据分析吗?那快速的历史数据分析是否可以视为实时分析?

实时分析的关键点并不在于分析数据的速度,而在于快速分析的是新鲜且格式良好的数据。也就是说,在进行分析之前,数据就需要实时导入和转换。

对于实时数据导入、转换与分析,有一个值得一试的强大组合: RisingWaveClickHouse

  • ClickHouse 是一款高性能列式数据库管理系统 (DBMS),用于联机分析 (OLAP),可以处理大量数据和复杂分析查询。
  • RisingWave 是专为流处理设计的数据库。它与 PostgreSQL 兼容,支持导入实时数据流,可以执行多样化转换,并能够立即查询结果。

在将数据导入 ClickHouse 之前,通过 RisingWave 的实时数据转换功能,对数据进行预处理与扩充,从而确保导入的数据能满足精确分析的需求。

1. 用例展示:为购物车事件扩充产品信息

在本文中,我将以在线零售为例,展示如何构建一个实时导入、转换和分析数据的系统。

我们有一条数据流,用于记录客户将商品添加到购物车时触发的事件 (Event)。

以下是一个典型的购物车事件:

erlang 复制代码
(customerId, eventTime, itemId)
--------------------------------
("1234","2023-02-01 10:01:00","P001")
("1234","2023-02-01 10:05:00","P002")

由于这条数据流中没有具体产品信息,仅根据它进行分析是很困难的。要使其有用,有多种办法。我们可以将其与订单流join,用于分析已添加到购物车但尚未付款的商品,或者将其与产品目录表join,从而形成一个扩充的数据流。

在接下来的演示中,我们就把它与产品目录表进行join,并将扩充后的数据流输出到 ClickHouse 做进一步分析。

我们先假设产品目录表如下:

erlang 复制代码
itemId, name, price, category
-------------------------------------
 ("P001","Red T-Shirt",9.99,"Apparel"),
  ("P002","Blue Jeans",39.95,"Apparel")

2. 架构概览

我们先使用 RisingWave 进行实时数据导入和扩充,然后将扩充后的数据输出到 ClickHouse,后者将进一步分析数据。下图展示了该用例的架构:

3. 准备工作

  • 安装 psql。如需了解如何只安装 psql,不安装其他 PostgreSQL 组件,请参阅 《在不安装 PostgreSQL 的情况下安装 psql》

  • 启动并运行 Kafka Producer。我们使用 KRaft 来启动 Kafka,具体方式请参阅《APACHE KAFKA 快速入门》

  • 安装并连接 RisingWave。

    bash 复制代码
    # 安装 RisingWave
    brew tap risingwavelabs/risingwave
    brew install risingwave
    # 启动 RisingWave
    risingwave playground
    
    # 在一个新的终端窗口连接 RisingWave
    psql -h localhost -p 4566 -d dev -U root
  • 安装并连接 ClickHouse

    bash 复制代码
    # 下载 ClickHouse 的二进制文件
    curl <https://clickhouse.com/> | sh
    # 启动服务
    ./clickhouse server
    # 在一个新的终端窗口启动客户端
    ./clickhouse client

4. 向 Kafka 写入事件

现在,让我们创建一个 topic,并插入一些事件:

bash 复制代码
# 创建一个 topic
bin/kafka-topics.sh --create --topic cart-events --bootstrap-server localhost:9092
# 写入三条事件
bin/kafka-console-producer.sh --topic cart-events --bootstrap-server localhost:9092

{"cust_id": "1234", "event_time": "2023-02-01 10:01:00", "item_id": "P001"}
{"cust_id": "1232","event_time": "2023-02-01 10:05:00", "item_id": "P002"}
{"cust_id": "1235","event_time": "2023-02-01 10:10:00","item_id": "P003"}

# 请不要关闭 producer,稍后我们还要写入更多事件

5. 向 RisingWave 导入数据

现在,我们在 RisingWave 中创建一个表来导入这些事件。在RisingWave 中,您可以创建源 (Source) 或表 (Table) 来导入事件。这两者的不同之处在于,如果使用表,导入的事件将储存在 RisingWave。

ini 复制代码
CREATE TABLE IF NOT EXISTS cart_event (
cust_id VARCHAR,
event_time TIMESTAMP,
item_id VARCHAR
)
WITH (
   connector='kafka',
   topic='cart-events',
   properties.bootstrap.server='localhost:9092',
   scan.startup.mode='earliest',
) FORMAT PLAIN ENCODE JSON;

然后在 RisingWave 中创建一个本地表,用来存储产品目录,并往表里插入一些数据,这样,我们就可以用产品目录信息来扩充购物车事件。

sql 复制代码
CREATE TABLE product_catalog (
item_id varchar,
name varchar,
price double precision,
category varchar
);

INSERT INTO product_catalog (item_id, name, price, category)
VALUES 
  ('P001','Red T-Shirt',9.99,'Apparel'),
  ('P002','Blue Jeans',39.95,'Apparel'),
  ('P003','Smart Watch',199.99,'Electronics'),
  ('P004','Yoga Mat',29.95,'Fitness'), 
  ('P005','Wireless Headphones',99.99,'Electronics'),
  ('P006','Coffee Mug',5.99,'Kitchen');

6. 将数据流与表 join

现在,我们将 cart_event 流与 product_catalog 表join起来,形成一条扩充后的数据流。接下来,如果我们还想进行其他一些转换操作,可以使用物化视图 (Materialized View) 来执行这个"流-表"join。如果我们只想使用产品目录来扩充这个数据流,那可以只简单地创建一个 sink 来执行连接。在这个用例中,我们将使用物化视图。

RisingWave 的流式物化视图创新性地通过增量更新实时反映结果。

css 复制代码
CREATE MATERIALIZED VIEW data_enrichment AS SELECT 
  c.cust_id,
  c.event_time,
  p.name,
  p.price,
  p.category
FROM
  cart_event c
JOIN
  product_catalog p 
ON 
  c.item_id = p.item_id;

通过这个"流-表"join,每当原始事件进入 RisingWave,就会产生一个扩充事件。

7. 将扩充后的数据流传输到 ClickHouse

接下来,我们可以将扩充后的数据流传输到 ClickHouse,以做进一步分析。为了实现这一点,我们需要在 ClickHouse 中创建一个表,这个表要与 RisingWave 中的表具有相同的schema 。我们希望将数据从物化视图 data_enrichment 中传输出来,所以要创建一个与 data_enrichment 具有相同schema的表。

arduino 复制代码
---在 ClickHouse 中运行以下代码
CREATE TABLE enriched_cart_events
(
cust_id String,
event_time DateTime64,
name String,
price Float64,
category String
)
ENGINE = ReplacingMergeTree()
ORDER BY (cust_id, event_time);

当传输目标就位后,我们可以创建一个 sink,并开始将数据从 RisingWave 传输到 ClickHouse。

ini 复制代码
---在 RisingWave 中运行以下代码
CREATE SINK sink_to_clickhouse
FROM
    data_enrichment WITH (
    connector = 'clickhouse',
  type='append-only',
  force_append_only='true',
    clickhouse.url = '<http://0.0.0.0:8123>',
    clickhouse.user = 'default',
    clickhouse.password = '',
    clickhouse.database = 'default',
    clickhouse.table='enriched_cart_events',
);

现在,查询 ClickHouse 的表,看看数据是否已传输。

yaml 复制代码
SELECT * from enriched_cart_events;

------ 结果
┌─cust_id─┬──────event_time─────────┬─name────────┬─price─┬category─────┐
│ 1234    │ 2023-02-01 18:01:00.000 │ Red T-Shirt │  9.99 │ Apparel     │
│ 1232    │ 2023-02-01 18:05:00.000 │ Blue Jeans  │ 39.95 │ Apparel     │
│ 1235    │ 2023-02-01 18:10:00.000 │ Smart Watch │ 199.99│ Electronics 
└─────────┴─────────────────────────┴─────────────┴───────┴─────────────┘

可以看到,三条事件都已经被扩充,可以用于 ClickHouse 的分析。

接下来,我们来模拟一条数据流,一次写入一个事件,并立即在 ClickHouse 中查询表。

lua 复制代码
--- 每次写入一个事件
{"cust_id": "1236","event_time": "2023-02-01 10:15:00","item_id": "P001"}
{"cust_id": "1237","event_time": "2023-02-01 10:20:00","item_id": "P004"}
{"cust_id": "1238", "event_time": "2023-02-01 10:25:00", "item_id": "P002"}
{"cust_id": "1239", "event_time": "2023-02-01 10:30:00", "item_id": "P005"}
{"cust_id": "1240", "event_time": "2023-02-01 10:35:00", "item_id": "P003"}
{"cust_id": "1241", "event_time": "2023-02-01 10:40:00", "item_id": "P006"}
{"cust_id": "1242", "event_time": "2023-02-01 10:45:00", "item_id": "P007"}

每当我们将一条事件写入 Kafka,扩充后的数据就会立即出现在 ClickHouse 的表中,每次查询表时,您都将看到新增了一行数据。

当将所有上述信息 (Message) 写入 Kafka 后,您应该会看到类似如下内容。

yaml 复制代码
SELECT * FROM enriched_cart_events;

------ RESULTS

┌custid┬───eventtime─────────┬───────name──────┬──price─┬────category─┐
│ 1232 │ 23-02-01 18:05:00.00│ Blue Jeans      │  39.95 │ Apparel     │
│ 1234 │ 23-02-01 18:01:00.00│ Red T-Shirt     │   9.99 │ Apparel     │
│ 1235 │ 23-02-01 18:10:00.00│ Smart Watch     │ 199.99 │ Electronics │
│ 1236 │ 23-02-01 18:15:00.00│ Red T-Shirt     │   9.99 │ Apparel     │
│ 1237 │ 23-02-01 18:20:00.00│ Yoga Mat        │  29.95 │ Fitness     │
│ 1238 │ 23-02-01 18:25:00.00│ Blue Jeans      │  39.95 │ Apparel     │
│ 1239 │ 23-02-01 18:30:00.00│ Wireless Phones │  99.99 │ Electronics │
│ 1240 │ 23-02-01 18:35:00.00│ Smart Watch     │ 199.99 │ Electronics │
│ 1241 │ 23-02-01 18:40:00.00│ Coffee Mug      │   5.99 │ Kitchen     │
└──────┴─────────────────────┴─────────────────┴────────┴─────────────┘

8. 总结

在本文中,为简单起见,我们以一个流-表 join 为例,演示如何扩充数据。而在实际场景中,在数据传输到 ClickHouse 前,我们可以进行多流 join,并对流中的数据进行过滤和聚合。通过 RisingWave 的实时数据导入和转换能力,确保 ClickHouse 接收到的是可立即用于深入分析的高质量数据。

9. 关于 RisingWave

RisingWave 是一款分布式 SQL 流处理数据库,旨在帮助用户降低实时应用的的开发成本。作为专为云上分布式流处理而设计的系统,RisingWave 为用户提供了与 PostgreSQL 类似的使用体验,并且具备比 Flink 高出 10 倍的性能以及更低的成本。

🧑‍💻想要了解和探索 RisingWave,欢迎浏览我们的官网:risingwave.com/

🔧快速上手 RisingWave,欢迎体验入门教程:github.com/risingwavel

💻深入理解使用 RisingWave,欢迎阅读用户文档:zh-cn.risingwave.com/docs

相关推荐
许野平26 分钟前
Rust: 利用 chrono 库实现日期和字符串互相转换
开发语言·后端·rust·字符串·转换·日期·chrono
零炻大礼包35 分钟前
【SQL server】数据库远程连接配置
数据库
zmgst44 分钟前
canal1.1.7使用canal-adapter进行mysql同步数据
java·数据库·mysql
随心............1 小时前
python操作MySQL以及SQL综合案例
数据库·mysql
€☞扫地僧☜€1 小时前
docker 拉取MySQL8.0镜像以及安装
运维·数据库·docker·容器
CopyDragon1 小时前
设置域名跨越访问
数据库·sqlite
xjjeffery1 小时前
MySQL 基础
数据库·mysql
写bug的小屁孩1 小时前
前后端交互接口(三)
运维·服务器·数据库·windows·用户界面·qt6.3
恒辉信达1 小时前
hhdb数据库介绍(8-4)
服务器·数据库·mysql
齐 飞2 小时前
MongoDB笔记01-概念与安装
前端·数据库·笔记·后端·mongodb