机器学习 - save和load训练好的模型

如果已经训练好了一个模型,你就可以save和load这模型。

For saving and loading models in PyTorch, there are three main methods you should be aware of.

PyTorch method What does it do?
torch.save Saves a serialized object to disk using Python's pickle utility. Models, tensors and various other Python objects like dictionaries can be saved using torch.save
torch.load Uses pickle's unpickling features to deserialize and load pickled Python object files (like models, tensors or dictionaries) into memory. You can also set which device to load the object to (CPU, GPU etc)
torch.nn.Module.load_state_dict Loads a model's parameter dictionary (model.state_dict()) using a saved state_dict() object

在 PyTorch 中,pickle 是一个用于序列化和反序列化Python对象的标准库模块。它可以将Python对象转换为字节流 (即序列化),并将字节流转换回Python对象 (即反序列化)。pickle模块在很多情况下都非常有用,特别是在保存和加载模型,保存训练中间状态等方面。

在深度学习中,经常需要保存训练好的模型或者训练过程中的中间结果,以便后续的使用或分析。PyTorch提高了方便的API来保存和加载模型,其中就包括了使用pickle模块进行对象的序列化和反序列化。


save model

python 复制代码
import torch
from pathlib import Path 

# 1. Create models directory
MODEL_PATH = Path("models")
MODEL_PATH.mkdir(parents = True, exist_ok = True)

# 2. Create model save path
MODEL_NAME = "trained_model.pth"
MODEL_SAVE_PATH = MODEL_PATH / MODEL_NAME

# 3. Save the model state dict 
print(f"Saving model to: {MODEL_SAVE_PATH}")
torch.save(obj = model_0.state_dict(),
			f = MODEL_SAVE_PATH)

就能看到 trained_model.pth 文件下载到所属的文件夹位置。


Load the saved PyTorch model

You can load it in using torch.nn.Module.load_state_dict(torch.load(f)) where f is the filepath of the saved model state_dict().

Why call torch.load() inside torch.nn.Module.load_state_dict()?

Because you only saved the model's state_dict() which is a dictionary of learned parameters and not the entire model, you first have to load the state_dict() with torch.load() and then pass that state_dict() to a new instance of the model (which is a subclass of nn.Module).

python 复制代码
# Instantiate a new instance of the model 
loaded_model_0 = LinearRegressionModel()

# Load the state_dict of the saved model
loaded_model_0.load_state_dict(torch.load(f=MODEL_SAVE_PATH))

# 结果如下
<All keys matched successfully>

测试 loaded model。

python 复制代码
# Put the loaded model into evaluation model 
loaded_model_0.eval() 

# 2. Use the inference mode context manager to make predictions
with torch.inference_mode():
  loaded_model_preds = loaded_model_0(X_test)

# Compare previous model predictions with loaded model predictions
print(y_preds == loaded_model_preds) 

# 结果如下
tensor([[True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True]])

看到这了,点个赞呗~

相关推荐
青瓷程序设计19 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z19 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
金智维科技官方20 小时前
RPA财务机器人为企业高质量发展注入动能
人工智能·机器人·rpa·财务
沫儿笙20 小时前
安川机器人tag焊接怎么节省保护气
人工智能·物联网·机器人
2501_9411474220 小时前
人工智能赋能智慧教育互联网应用:智能学习与教育管理优化实践探索》
人工智能
yLDeveloper21 小时前
一只菜鸟学机器学习的日记:入门分布偏移
机器学习·dive into deep learning
阿龙AI日记21 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
爱写代码的小朋友21 小时前
“数字镜像”与认知负能者:生成式AI个性化学习支持者的协同构建与伦理规制研究
人工智能
找方案21 小时前
新型智慧城市城市大数据应用解决方案
人工智能·智慧城市
K***728421 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源