机器学习 - save和load训练好的模型

如果已经训练好了一个模型,你就可以save和load这模型。

For saving and loading models in PyTorch, there are three main methods you should be aware of.

PyTorch method What does it do?
torch.save Saves a serialized object to disk using Python's pickle utility. Models, tensors and various other Python objects like dictionaries can be saved using torch.save
torch.load Uses pickle's unpickling features to deserialize and load pickled Python object files (like models, tensors or dictionaries) into memory. You can also set which device to load the object to (CPU, GPU etc)
torch.nn.Module.load_state_dict Loads a model's parameter dictionary (model.state_dict()) using a saved state_dict() object

在 PyTorch 中,pickle 是一个用于序列化和反序列化Python对象的标准库模块。它可以将Python对象转换为字节流 (即序列化),并将字节流转换回Python对象 (即反序列化)。pickle模块在很多情况下都非常有用,特别是在保存和加载模型,保存训练中间状态等方面。

在深度学习中,经常需要保存训练好的模型或者训练过程中的中间结果,以便后续的使用或分析。PyTorch提高了方便的API来保存和加载模型,其中就包括了使用pickle模块进行对象的序列化和反序列化。


save model

python 复制代码
import torch
from pathlib import Path 

# 1. Create models directory
MODEL_PATH = Path("models")
MODEL_PATH.mkdir(parents = True, exist_ok = True)

# 2. Create model save path
MODEL_NAME = "trained_model.pth"
MODEL_SAVE_PATH = MODEL_PATH / MODEL_NAME

# 3. Save the model state dict 
print(f"Saving model to: {MODEL_SAVE_PATH}")
torch.save(obj = model_0.state_dict(),
			f = MODEL_SAVE_PATH)

就能看到 trained_model.pth 文件下载到所属的文件夹位置。


Load the saved PyTorch model

You can load it in using torch.nn.Module.load_state_dict(torch.load(f)) where f is the filepath of the saved model state_dict().

Why call torch.load() inside torch.nn.Module.load_state_dict()?

Because you only saved the model's state_dict() which is a dictionary of learned parameters and not the entire model, you first have to load the state_dict() with torch.load() and then pass that state_dict() to a new instance of the model (which is a subclass of nn.Module).

python 复制代码
# Instantiate a new instance of the model 
loaded_model_0 = LinearRegressionModel()

# Load the state_dict of the saved model
loaded_model_0.load_state_dict(torch.load(f=MODEL_SAVE_PATH))

# 结果如下
<All keys matched successfully>

测试 loaded model。

python 复制代码
# Put the loaded model into evaluation model 
loaded_model_0.eval() 

# 2. Use the inference mode context manager to make predictions
with torch.inference_mode():
  loaded_model_preds = loaded_model_0(X_test)

# Compare previous model predictions with loaded model predictions
print(y_preds == loaded_model_preds) 

# 结果如下
tensor([[True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True]])

看到这了,点个赞呗~

相关推荐
weixin_4572971014 分钟前
RAG流程全解析:从数据到精准答案
人工智能
whaosoft-14314 分钟前
51c大模型~合集171
人工智能
arron889928 分钟前
YOLOv8n-pose 模型使用
人工智能·深度学习·yolo
AI人工智能+2 小时前
一种融合AI与OCR的施工许可证识别技术,提升工程监管效率,实现自动化、精准化处理。
人工智能·自动化·ocr·施工许可证识别
大力水手(Popeye)2 小时前
Pytorch——tensor
人工智能·pytorch·python
ygy.白茶4 小时前
从电影分类到鸢尾花识别
人工智能
AI_gurubar6 小时前
大模型教机器人叠衣服:2025年”语言理解+多模态融合“的智能新篇
人工智能·机器人
XINVRY-FPGA8 小时前
EPM240T100I5N Altera FPGA MAX II CPLD
人工智能·嵌入式硬件·fpga开发·硬件工程·dsp开发·射频工程·fpga
HuggingFace9 小时前
开源开发者须知:欧盟《人工智能法案》对通用人工智能模型的最新要求
人工智能
Coovally AI模型快速验证9 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机