机器学习 - save和load训练好的模型

如果已经训练好了一个模型,你就可以save和load这模型。

For saving and loading models in PyTorch, there are three main methods you should be aware of.

PyTorch method What does it do?
torch.save Saves a serialized object to disk using Python's pickle utility. Models, tensors and various other Python objects like dictionaries can be saved using torch.save
torch.load Uses pickle's unpickling features to deserialize and load pickled Python object files (like models, tensors or dictionaries) into memory. You can also set which device to load the object to (CPU, GPU etc)
torch.nn.Module.load_state_dict Loads a model's parameter dictionary (model.state_dict()) using a saved state_dict() object

在 PyTorch 中,pickle 是一个用于序列化和反序列化Python对象的标准库模块。它可以将Python对象转换为字节流 (即序列化),并将字节流转换回Python对象 (即反序列化)。pickle模块在很多情况下都非常有用,特别是在保存和加载模型,保存训练中间状态等方面。

在深度学习中,经常需要保存训练好的模型或者训练过程中的中间结果,以便后续的使用或分析。PyTorch提高了方便的API来保存和加载模型,其中就包括了使用pickle模块进行对象的序列化和反序列化。


save model

python 复制代码
import torch
from pathlib import Path 

# 1. Create models directory
MODEL_PATH = Path("models")
MODEL_PATH.mkdir(parents = True, exist_ok = True)

# 2. Create model save path
MODEL_NAME = "trained_model.pth"
MODEL_SAVE_PATH = MODEL_PATH / MODEL_NAME

# 3. Save the model state dict 
print(f"Saving model to: {MODEL_SAVE_PATH}")
torch.save(obj = model_0.state_dict(),
			f = MODEL_SAVE_PATH)

就能看到 trained_model.pth 文件下载到所属的文件夹位置。


Load the saved PyTorch model

You can load it in using torch.nn.Module.load_state_dict(torch.load(f)) where f is the filepath of the saved model state_dict().

Why call torch.load() inside torch.nn.Module.load_state_dict()?

Because you only saved the model's state_dict() which is a dictionary of learned parameters and not the entire model, you first have to load the state_dict() with torch.load() and then pass that state_dict() to a new instance of the model (which is a subclass of nn.Module).

python 复制代码
# Instantiate a new instance of the model 
loaded_model_0 = LinearRegressionModel()

# Load the state_dict of the saved model
loaded_model_0.load_state_dict(torch.load(f=MODEL_SAVE_PATH))

# 结果如下
<All keys matched successfully>

测试 loaded model。

python 复制代码
# Put the loaded model into evaluation model 
loaded_model_0.eval() 

# 2. Use the inference mode context manager to make predictions
with torch.inference_mode():
  loaded_model_preds = loaded_model_0(X_test)

# Compare previous model predictions with loaded model predictions
print(y_preds == loaded_model_preds) 

# 结果如下
tensor([[True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True]])

看到这了,点个赞呗~

相关推荐
Wgrape15 分钟前
一文了解常见AI搜索方案的代码实现
人工智能·后端
中医正骨葛大夫23 分钟前
一文解决如何在Pycharm中创建cuda深度学习环境?
pytorch·深度学习·pycharm·软件安装·cuda·anaconda·配置环境
Vadaski25 分钟前
私有 Context 工程如何落地:从方法论到实战
人工智能·程序员
胖墩会武术26 分钟前
【OpenCV图像处理】深度学习:cv2.dnn() —— 图像分类、人脸检测、目标检测
图像处理·pytorch·python·opencv
刘国华-平价IT运维课堂32 分钟前
红帽企业Linux 10.1发布:AI命令行助手、量子安全加密和混合云创新
linux·运维·服务器·人工智能·云计算
Xiaok101833 分钟前
在 Jupyter Notebook 中启动 TensorBoard
人工智能·python·jupyter
F_D_Z38 分钟前
【k近邻】Kd树构造与最近邻搜索示例
算法·机器学习·近邻算法·k近邻算法
亚马逊云开发者1 小时前
相得益彰:Mem0 记忆框架与亚马逊云科技的企业级 AI 实践
人工智能
龙腾AI白云1 小时前
具身智能-高层任务规划(High-level Task Planning)
深度学习·数据挖掘
AAA修煤气灶刘哥1 小时前
Y-Agent Studio :打破 DAG 的“无环”铁律?揭秘有向有环图如何让智能体真正“活”起来
人工智能·低代码·agent