机器学习 - save和load训练好的模型

如果已经训练好了一个模型,你就可以save和load这模型。

For saving and loading models in PyTorch, there are three main methods you should be aware of.

PyTorch method What does it do?
torch.save Saves a serialized object to disk using Python's pickle utility. Models, tensors and various other Python objects like dictionaries can be saved using torch.save
torch.load Uses pickle's unpickling features to deserialize and load pickled Python object files (like models, tensors or dictionaries) into memory. You can also set which device to load the object to (CPU, GPU etc)
torch.nn.Module.load_state_dict Loads a model's parameter dictionary (model.state_dict()) using a saved state_dict() object

在 PyTorch 中,pickle 是一个用于序列化和反序列化Python对象的标准库模块。它可以将Python对象转换为字节流 (即序列化),并将字节流转换回Python对象 (即反序列化)。pickle模块在很多情况下都非常有用,特别是在保存和加载模型,保存训练中间状态等方面。

在深度学习中,经常需要保存训练好的模型或者训练过程中的中间结果,以便后续的使用或分析。PyTorch提高了方便的API来保存和加载模型,其中就包括了使用pickle模块进行对象的序列化和反序列化。


save model

python 复制代码
import torch
from pathlib import Path 

# 1. Create models directory
MODEL_PATH = Path("models")
MODEL_PATH.mkdir(parents = True, exist_ok = True)

# 2. Create model save path
MODEL_NAME = "trained_model.pth"
MODEL_SAVE_PATH = MODEL_PATH / MODEL_NAME

# 3. Save the model state dict 
print(f"Saving model to: {MODEL_SAVE_PATH}")
torch.save(obj = model_0.state_dict(),
			f = MODEL_SAVE_PATH)

就能看到 trained_model.pth 文件下载到所属的文件夹位置。


Load the saved PyTorch model

You can load it in using torch.nn.Module.load_state_dict(torch.load(f)) where f is the filepath of the saved model state_dict().

Why call torch.load() inside torch.nn.Module.load_state_dict()?

Because you only saved the model's state_dict() which is a dictionary of learned parameters and not the entire model, you first have to load the state_dict() with torch.load() and then pass that state_dict() to a new instance of the model (which is a subclass of nn.Module).

python 复制代码
# Instantiate a new instance of the model 
loaded_model_0 = LinearRegressionModel()

# Load the state_dict of the saved model
loaded_model_0.load_state_dict(torch.load(f=MODEL_SAVE_PATH))

# 结果如下
<All keys matched successfully>

测试 loaded model。

python 复制代码
# Put the loaded model into evaluation model 
loaded_model_0.eval() 

# 2. Use the inference mode context manager to make predictions
with torch.inference_mode():
  loaded_model_preds = loaded_model_0(X_test)

# Compare previous model predictions with loaded model predictions
print(y_preds == loaded_model_preds) 

# 结果如下
tensor([[True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True],
        [True]])

看到这了,点个赞呗~

相关推荐
许泽宇的技术分享1 分钟前
当AI学会拍短剧:Huobao Drama全栈AI短剧生成平台深度解析
人工智能
爱喝可乐的老王1 分钟前
机器学习监督学习模型--线性回归
人工智能·机器学习·线性回归
金融Tech趋势派2 分钟前
2025企业微信私有化部署优秀服务商:微盛·企微管家方案解析
人工智能·企业微信·scrm
Gofarlic_oms112 分钟前
跨国企业Cadence许可证全球统一管理方案
java·大数据·网络·人工智能·汽车
AAD5558889913 分钟前
牛肝菌目标检测:基于YOLOv8-CFPT-P2345模型的创新实现与应用_1
人工智能·yolo·目标检测
幂链iPaaS25 分钟前
制造业/零售电商ERP和MES系统集成指南
大数据·人工智能
gorgeous(๑>؂<๑)31 分钟前
【中国科学院光电研究所-张建林组-AAAI26】追踪不稳定目标:基于外观引导的运动建模在无人机拍摄视频中实现稳健的多目标跟踪
人工智能·机器学习·计算机视觉·目标跟踪·无人机
美狐美颜sdk38 分钟前
企业级直播美颜SDK与动态贴纸SDK开发技术方案拆解与落地实践
android·人工智能·计算机视觉·第三方美颜sdk·人脸美型sdk
不如语冰39 分钟前
AI大模型入门1.1-python基础-数据结构
数据结构·人工智能·pytorch·python·cnn
oscar9991 小时前
机器学习实战:多项式回归建模——从模拟数据到模型评估
人工智能·机器学习·回归