LLMs之Grok-1:run.py文件解读—运行语言模型实现推理—即基于用户的输入文本利用grok_1语言模型来生成文本

LLMs之Grok-1:run.py文件解读---运行语言模型实现推理---即基于用户的输入文本利用grok_1语言模型来生成文本

目录

run.py文件解读---运行语言模型实现推理---即基于用户的输入文本利用grok_1语言模型来生成文本

概述

[1、加载预训练的语言模型 grok_1](#1、加载预训练的语言模型 grok_1)

1.1、定义模型的配置

2、定义并初始化推理运行器

[2.1、创建一个 InferenceRunner 对象(用于运行模型推理)](#2.1、创建一个 InferenceRunner 对象(用于运行模型推理))

[2.2、调用 inference_runner.initialize() 方法初始化推理运行器。](#2.2、调用 inference_runner.initialize() 方法初始化推理运行器。)

[2.3、调用 inference_runner.run() 方法运行模型推理并获取生成器。](#2.3、调用 inference_runner.run() 方法运行模型推理并获取生成器。)

3、模型生成

全部代码


run.py文件解读 ---运行语言模型实现推理---即基于用户的输入文本 利用grok_1语言模型来生成文本

源码地址grok-1/run.py at main · xai-org/grok-1 · GitHub

概述

这段代码使用了一个预训练的语言模型 grok_1_model 来生成文本。代码首先定义了模型的配置,然后创建了一个 InferenceRunner 对象来运行模型推理。最后,代码定义了一个输入字符串,并使用 sample_from_model 函数从模型中获取一个样本,将其打印出来。

1、加载预训练的语言模型 grok_1

1.1、 定义模型的配置

定义一个名为 grok_1_model 的 LanguageModelConfig 对象,该对象包含有关模型配置的详细信息,例如词汇表大小、序列长度、嵌入层初始化比例、输出和嵌入层的乘数比例等。模型的架构是一个 TransformerConfig 对象,其中包括了嵌入大小、扩展因子、键大小、头数量、层数、注意力输出乘数等参数。

2、定义并 初始化推理运行器

2.1、 创建一个 InferenceRunner 对象 ( 用于运行模型推理 )

InferenceRunner 接受一个 ModelRunner 对象作为参数,该对象包含了模型配置、批处理大小、检查点路径等信息。InferenceRunner 还需要指定一些其他参数,如名称、加载路径、分词器路径、本地和跨主机配置等。

2.2、 调用 inference_runner.initialize() 方法初始化推理运行器。

2.3、 调用 inference_runner.run() 方法运行模型推理并获取生成器。

3、模型生成

定义一个输入字符串 inp,然后使用 sample_from_model 函数从生成器中获取一个样本,并将其打印出来。

全部代码

python 复制代码
# Copyright 2024 X.AI Corp.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

from model import LanguageModelConfig, TransformerConfig, QuantizedWeight8bit as QW8Bit
from runners import InferenceRunner, ModelRunner, sample_from_model


CKPT_PATH = "./checkpoints/"


def main():
    grok_1_model = LanguageModelConfig(
        vocab_size=128 * 1024,
        pad_token=0,
        eos_token=2,
        sequence_len=8192,
        embedding_init_scale=1.0,
        output_multiplier_scale=0.5773502691896257,
        embedding_multiplier_scale=78.38367176906169,
        model=TransformerConfig(
            emb_size=48 * 128,
            widening_factor=8,
            key_size=128,
            num_q_heads=48,
            num_kv_heads=8,
            num_layers=64,
            attn_output_multiplier=0.08838834764831845,
            shard_activations=True,
            # MoE.
            num_experts=8,
            num_selected_experts=2,
            # Activation sharding.
            data_axis="data",
            model_axis="model",
        ),
    )
    inference_runner = InferenceRunner(
        pad_sizes=(1024,),
        runner=ModelRunner(
            model=grok_1_model,
            bs_per_device=0.125,
            checkpoint_path=CKPT_PATH,
        ),
        name="local",
        load=CKPT_PATH,
        tokenizer_path="./tokenizer.model",
        local_mesh_config=(1, 8),
        between_hosts_config=(1, 1),
    )
    inference_runner.initialize()
    gen = inference_runner.run()

    inp = "The answer to life the universe and everything is of course"
    print(f"Output for prompt: {inp}", sample_from_model(gen, inp, max_len=100, temperature=0.01))


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    main()
相关推荐
小白跃升坊13 小时前
【保姆级教程】:开源 Qwen3 本地化部署实操详细教程
大语言模型·it运维·linux操作系统·max kb
不是吧这都有重名2 天前
[论文阅读]Deeply-Supervised Nets
论文阅读·人工智能·算法·大语言模型
亚里随笔5 天前
StreamRL:弹性、可扩展、异构的RLHF架构
人工智能·架构·大语言模型·rlhf·推理加速
deephub12 天前
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
人工智能·pytorch·深度学习·缓存·大语言模型
苹果二15 天前
【学习资源】知识图谱与大语言模型融合
知识图谱·大语言模型
deephub15 天前
SecMulti-RAG:兼顾数据安全与智能检索的多源RAG框架,为企业构建不泄密的智能搜索引擎
人工智能·深度学习·大语言模型·rag·智能检索
cxr82815 天前
基于Playwright的浏览器自动化MCP服务
人工智能·自动化·大语言模型·mcp
维度攻城狮15 天前
通过DeepSeek大语言模型控制panda机械臂,听懂人话,拟人性回答。智能机械臂助手又进一步啦
大语言模型·控制·ros2·moveit·deepseek·rviz2
changzz200816 天前
低配置电脑预训练minimind的实践
llm·大语言模型·minimind·低配置
cxr82817 天前
微调灾情分析报告生成模型
人工智能·大语言模型·模型微调