决策树学习-计算数据集的信息熵

复制代码
 #计算信息熵
def calEntro(dataset):
    dataset = np.array(dataset)
    data_len = len(dataset)
    #labelCount记录各类样本数据的数量
    labelCount = {}

    for row in dataset:
        cur_label = row[-1]
        if cur_label not in labelCount.keys():
            labelCount[cur_label] = 0
        labelCount[cur_label] += 1

    result = 0
    for key in labelCount.keys():
        prob = labelCount[key]/data_len
        result -= prob*math.log2(prob)
    return result

这段代码是用来计算数据集的信息熵的函数。信息熵是用来衡量数据集的不确定性,即数据集中包含的信息量。以下是对代码的解释:

  1. def calEntro(dataset)::定义了一个名为 calEntro 的函数,该函数接受一个数据集 dataset 作为输入参数。

  2. dataset = np.array(dataset):将输入的数据集转换为 NumPy 数组,以方便处理。

  3. data_len = len(dataset):获取数据集的长度,即数据集中样本的数量。

  4. labelCount = {}:初始化一个空字典 labelCount,用于记录数据集中各类别样本的数量。

  5. 遍历数据集中的每一行:

    • cur_label = row[-1]:获取当前样本的标签值(假设标签值在每行的最后一个位置)。
    • if cur_label not in labelCount.keys(): labelCount[cur_label] = 0:如果当前标签值不在 labelCount 字典的键中,则将其初始化为 0。
    • labelCount[cur_label] += 1:统计当前标签值在数据集中出现的次数。
  6. 计算信息熵:

    • result = 0:初始化信息熵的结果为 0。
    • 遍历 labelCount 字典中的每个键(类别):
      • prob = labelCount[key]/data_len:计算当前类别在数据集中的概率。
      • result -= prob*math.log2(prob):根据信息熵的公式,累加计算信息熵的值,其中 math.log2(prob) 表示以2为底的对数运算。
    • 最终返回计算得到的信息熵值 result

总体来说,这段代码的功能是通过遍历数据集中的标签值,计算数据集的信息熵,并返回信息熵的值。信息熵值越高,表示数据集的不确定性越大。

相关推荐
刘一哥GIS5 分钟前
Windows环境搭建:PostGreSQL+PostGIS安装教程
数据库·python·arcgis·postgresql·postgis
算家计算11 分钟前
Wan2.2-Animate-14B 使用指南:从图片到动画的完整教程
人工智能·开源·aigc
西柚小萌新12 分钟前
【深入浅出PyTorch】--4.PyTorch基础实战
人工智能·pytorch·python
用户83562907805115 分钟前
掌控PDF页面:使用Python轻松实现添加与删除
后端·python
渡我白衣17 分钟前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(下)
人工智能·深度学习·神经网络
算家计算43 分钟前
快手新模型登顶开源编程模型榜首!超越Qwen3-Coder等模型
人工智能·开源·资讯
ManageEngineITSM1 小时前
IT 服务自动化的时代:让效率与体验共进
运维·数据库·人工智能·自动化·itsm·工单系统
用户3721574261351 小时前
Python 实现 Excel 文件加密与保护
python
Derrick__11 小时前
Python访问数据库——使用SQLite
数据库·python·sqlite
总有刁民想爱朕ha1 小时前
AI大模型学习(17)python-flask AI大模型和图片处理工具的从一张图到多平台适配的简单方法
人工智能·python·学习·电商图片处理