决策树学习-计算数据集的信息熵

复制代码
 #计算信息熵
def calEntro(dataset):
    dataset = np.array(dataset)
    data_len = len(dataset)
    #labelCount记录各类样本数据的数量
    labelCount = {}

    for row in dataset:
        cur_label = row[-1]
        if cur_label not in labelCount.keys():
            labelCount[cur_label] = 0
        labelCount[cur_label] += 1

    result = 0
    for key in labelCount.keys():
        prob = labelCount[key]/data_len
        result -= prob*math.log2(prob)
    return result

这段代码是用来计算数据集的信息熵的函数。信息熵是用来衡量数据集的不确定性,即数据集中包含的信息量。以下是对代码的解释:

  1. def calEntro(dataset)::定义了一个名为 calEntro 的函数,该函数接受一个数据集 dataset 作为输入参数。

  2. dataset = np.array(dataset):将输入的数据集转换为 NumPy 数组,以方便处理。

  3. data_len = len(dataset):获取数据集的长度,即数据集中样本的数量。

  4. labelCount = {}:初始化一个空字典 labelCount,用于记录数据集中各类别样本的数量。

  5. 遍历数据集中的每一行:

    • cur_label = row[-1]:获取当前样本的标签值(假设标签值在每行的最后一个位置)。
    • if cur_label not in labelCount.keys(): labelCount[cur_label] = 0:如果当前标签值不在 labelCount 字典的键中,则将其初始化为 0。
    • labelCount[cur_label] += 1:统计当前标签值在数据集中出现的次数。
  6. 计算信息熵:

    • result = 0:初始化信息熵的结果为 0。
    • 遍历 labelCount 字典中的每个键(类别):
      • prob = labelCount[key]/data_len:计算当前类别在数据集中的概率。
      • result -= prob*math.log2(prob):根据信息熵的公式,累加计算信息熵的值,其中 math.log2(prob) 表示以2为底的对数运算。
    • 最终返回计算得到的信息熵值 result

总体来说,这段代码的功能是通过遍历数据集中的标签值,计算数据集的信息熵,并返回信息熵的值。信息熵值越高,表示数据集的不确定性越大。

相关推荐
云天徽上1 分钟前
【数据可视化-33】病毒式社交媒体潮流与用户参与度可视化分析
机器学习·信息可视化·数据挖掘·数据分析·媒体
点云SLAM10 分钟前
点云配准算法之NDT算法原理详解
人工智能·算法·数学建模·点云配准算法·ndt配准算法·概率模型配准算法
AI蜗牛车21 分钟前
【LLM+Code】Cursor Agent 46.11 版本Prompt&Tools最细致解读
人工智能·算法·语言模型
张槊哲29 分钟前
如何打包python程序为可执行文件
开发语言·python
张3蜂34 分钟前
Jupyter Notebook 全面介绍:从原理到实战部署
ide·python·jupyter
悲喜自渡72142 分钟前
Pytorch(无CPU搭建)+Jupyter
人工智能·pytorch·jupyter
ARM2NCWU1 小时前
关联具体场景(如AI、智慧城市),强调部署效率
服务器·人工智能·智慧城市
AI_RSER1 小时前
基于 Google Earth Engine (GEE) 的土地利用变化监测
python·随机森林·分类·土地利用·gee·遥感影像·landsat
塔能物联运维1 小时前
解析塔能科技:绿色低碳智慧节能一站式破局之匙
大数据·人工智能·物联网
白熊1881 小时前
【计算机视觉】CV实战项目 -深度解析PaddleSegSharp:基于PaddleSeg的.NET图像分割解决方案
人工智能·计算机视觉·.net