一、使用回归学习器预测北京二手房房价
软件:MATLAB R2023 a
数据:
第一步:导入原始数据和待预测数据

第二步 :打开工具箱中的回归学习器导入学习数据
1.新建会话
2.寻找导入learning data
3.自动锁定前7列为自变量,最后一列为因变量(如果锁定有误,自行设置)
4.选择交叉验证折数为10
5.开始会话

第三步:选择学习模型,开始学习
这里可以点击全部后,点训练所有,这个时候会同时用所有模型进行学习

第四步:导出一个性能较好的模型,通过数据检验预测效果


可以看出预测的还是蛮精准的!
|-------|---------|---------|
| 5.83 | 7.0077 | -1.1777 |
| 7 | 6.8939 | 0.1061 |
| 8.36 | 7.9566 | 0.4034 |
| 4.17 | 4.8829 | -0.7129 |
| 7.98 | 7.3039 | 0.6761 |
| 4.39 | 4.6635 | -0.2735 |
| 6.24 | 5.1825 | 1.0575 |
| 8.58 | 8.0565 | 0.5235 |
| 4.4 | 4.5193 | -0.1193 |
| 9.83 | 8.3211 | 1.5089 |
| 5.49 | 4.7032 | 0.7868 |
| 8.64 | 8.0796 | 0.5604 |
| 4.94 | 4.3711 | 0.5689 |
| 10.01 | 10.206 | -0.196 |
| 5.31 | 4.743 | 0.567 |
| 5.23 | 4.5361 | 0.6939 |
| 4.56 | 4.7683 | -0.2083 |
| 10.37 | 9.8723 | 0.4977 |
| 5.31 | 5.0261 | 0.2839 |
| 7.37 | 7.7719 | -0.4019 |
| 4.11 | 4.5733 | -0.4633 |
| 8.95 | 8.5935 | 0.3565 |
| 5.13 | 4.0933 | 1.0367 |
| 4.14 | 4.4294 | -0.2894 |
| 4.36 | 4.7313 | -0.3713 |
| 5.33 | 4.8353 | 0.4947 |
| 4.57 | 4.0836 | 0.4864 |
| 5.29 | 6.8395 | -1.5495 |
| 9.7 | 10.1866 | -0.4866 |
| 6.34 | 4.7942 | 1.5458 |
| 4.81 | 5.4804 | -0.6704 |
| 4.1 | 3.9989 | 0.1011 |
| 9.77 | 8.879 | 0.891 |
| 6 | 5.0089 | 0.9911 |
| 8.3 | 7.3412 | 0.9588 |
| 8.37 | 6.3541 | 2.0159 |
| 5.69 | 5.7246 | -0.0346 |
| 11.28 | 10.3692 | 0.9108 |
| 8.67 | 8.2473 | 0.4227 |
| 7.39 | 7.7664 | -0.3764 |
| 9.08 | 8.205 | 0.875 |
| 8.46 | 10.0994 | -1.6394 |
| 3.72 | 4.3783 | -0.6583 |
| 6.02 | 6.7374 | -0.7174 |
| 8.48 | 8.7543 | -0.2743 |