DBO优化朴素贝叶斯分类预测(matlab代码)

DBO-朴素贝叶斯分类预测matlab代码

蜣螂优化算法(Dung Beetle Optimizer, DBO)是一种新型的群智能优化算法,在2022年底提出,主要是受蜣螂的的滚球、跳舞、觅食、偷窃和繁殖行为的启发。

数据为Excel分类数据集数据。

数据集划分为训练集、验证集、测试集,比例为8:1:1

模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。

数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。

模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。此外,还通过绘制分类情况图和混淆矩阵对模型的分类效果进行了可视化展示,帮助更直观地了解模型的性能和分类结果。

结果可视化: 通过绘制通过绘制DBO寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。

输出定量结果如下:

十折验证准确率:0.97561

训练集ACU:0.97561

验证集ACU:1

测试集ACU:1

运行时长:1.918

代码有中文介绍。

代码能正常运行时不负责答疑!

代码运行结果如下:

复制代码
部分代码如下;
% 清除命令窗口、工作区数据、图形窗口、警告
clc;
clear;
close all;
warning off;
load('data.mat')	
data1 = readtable('分类数据集.xlsx'); % 读取数据	
data2=data1(:,2:end); 	
data=table2array(data1(:,2:end));	
data_biao=data2.Properties.VariableNames;  %数据特征的名称	
A_data1=data;	
data_select=A_data1;	
	
%% 数据划分	
x_feature_label=data_select(:,1:end-1);    %x特征	
y_feature_label=data_select(:,end);          %y标签	
index_label1=randperm(size(x_feature_label,1));	
index_label=G_out_data.spilt_label_data;  % 数据索引	
if isempty(index_label)	
   index_label=index_label1;	
end	
spilt_ri=G_out_data.spilt_rio;  %划分比例 训练集:验证集:测试集	
train_num=round(spilt_ri(1)/(sum(spilt_ri))*size(x_feature_label,1));          %训练集个数	
vaild_num=round((spilt_ri(1)+spilt_ri(2))/(sum(spilt_ri))*size(x_feature_label,1)); %验证集个数	
%训练集,验证集,测试集	
train_x_feature_label=x_feature_label(index_label(1:train_num),:);	
train_y_feature_label=y_feature_label(index_label(1:train_num),:);	
vaild_x_feature_label=x_feature_label(index_label(train_num+1:vaild_num),:);	
vaild_y_feature_label=y_feature_label(index_label(train_num+1:vaild_num),:);	
test_x_feature_label=x_feature_label(index_label(vaild_num+1:end),:);	
test_y_feature_label=y_feature_label(index_label(vaild_num+1:end),:);	
相关推荐
大模型最新论文速读38 分钟前
BAR-RAG: 通过边界感知训练让单轮 RAG 效果媲美深度研究
论文阅读·人工智能·深度学习·机器学习·自然语言处理
万事ONES12 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
renhongxia112 小时前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
Loo国昌14 小时前
【大模型应用开发】第二阶段:语义理解应用:文本分类与聚类 (Text Classification & Clustering)
人工智能·分类·聚类
zy_destiny15 小时前
【工业场景】用YOLOv26实现桥梁检测
人工智能·深度学习·yolo·机器学习·计算机视觉·目标跟踪
(; ̄ェ ̄)。15 小时前
机器学习入门(十八)特征降维
人工智能·机器学习
m0_6038887116 小时前
Toward Cognitive Supersensing in Multimodal Large Language Model
人工智能·机器学习·ai·语言模型·论文速览
GIS数据转换器16 小时前
基于AI的低空数联无人机智慧巡查平台
大数据·人工智能·机器学习·无人机·宠物
爱吃rabbit的mq16 小时前
第2章 机器学习的核心概念(上)
人工智能·机器学习
yongui4783417 小时前
混凝土二维随机骨料模型 MATLAB 实现
算法·matlab