LLM应用:Prompt flow vs LangChain

背景

Prompt flow和LangChain都是LLM时代,为高效地构建LLM应用而生。

Prompt flow是Microsoft开源的,其诞生时,LangChain已经很有名气了。

所以作为后生的Prompt flow会为我们带来哪些新的东西呢?

​​​​​​​

Prompt flow带来新的设计理念

概述:

Prompt flow提供了一套开发工具,并通过实验来构建高质量的LLM应用程序,而不是一套框架(LangChain)。

可见其重点是聚焦在LLM应用程序的效果(质量)。

而这正是因LLM的不确定的特点所引发的新的思考方式。

所有用到的Prompt都要显示出来

当前的LLM应用,最重要的一个特点是围绕"prompt"提示词。

任何为了构建LLM应用而提供的工具or框架,都应该优先专注于prompt设计以及prompt的调优。

Prompt特点

Prompt的特点是不稳定(不确定)。

同一套Prompt在不同的LLM里,其效果是不一样的。

甚至是对于同一个LLM的不同版本,其效果也是无法保证一致的。

Prompt显示

所以在实际构建LLM应用时,任何用到Prompt的地方,都要能方便的调优。

由此可以推导出,在实际构建LLM应用时,任何用到Prompt的地方都需要显示出来,可以被修改,可以被调优。

而那些将Prompt隐藏在框架里的方式,很大概率会导致LLM应用的效果不一致,这时候就只能去修改框架了。

以效果评估为中心的工作方式

因Prompt的不稳定性,所以在LLM应用构建时,需要重点关注效果。

类似算法的常见评估指标:准确率、召回率等。

LLM应用的质量(效果)也需要一套评估标准。

Prompt flow为评估任务提供了很多的工具:

  1. 将评估程序转化为评估流
  2. 基于SDK/CLI的实验及评估管理(会记录每次评估的过程)
  3. 可将评估集成到CICD中

增强可视化

LLM应用中使用到的ReAct、RAG等模式,本身并不是新发明的。

其更多的是表达与外部系统的交互,例如与Search Engine的交互,与知识库的交互,与本地数据的交互等。

交互可以认为就是API调用。

在LLM应用构建以效果评估为中心时,我们需要明确的知道每一个交互步骤具体是怎么样的,每一个步骤的效果如何。

因此交互步骤级别的可视化就很有必要,可极大的提升研发和评估效率。

以上便是Prompt flow和LangChain的区别。

显而易见,更多的是理念上区别。

Prompt flow更像是实战派,通过在实战中总结经验,通过第一性原理,找到本质的地方,然后对齐抽象和封装。

相关推荐
重整旗鼓~8 小时前
1.大模型使用
java·语言模型·langchain
老友@10 小时前
RAG 的诞生:为了让 AI 不再“乱编”
人工智能·搜索引擎·ai·语言模型·自然语言处理·rag
hnode11 小时前
🚀 前端开发者的 AI 入门指南:5 分钟搭建你的第一个 RAG 智能问答系统
langchain
mwq3012313 小时前
《前端项目技术文档生成器》Prompt(可复用模板)
前端·llm·visual studio code
大模型真好玩14 小时前
LangChain1.0实战之多模态RAG系统(二)——多模态RAG系统图片分析与语音转写功能实现
人工智能·langchain·mcp
大模型教程16 小时前
谷歌AI Agent技术指南深度解读,从概念到生产
langchain·llm·agent
大模型教程16 小时前
一张图拆解 AI Agent 的“五脏六腑”,从感知到进化的完整逻辑!
程序员·llm·agent
爱装代码的小瓶子16 小时前
【初识AI】大模型和LangChain?
人工智能·langchain
智泊AI16 小时前
预测也用上大模型了!时间序列预测是什么?
llm
AI大模型16 小时前
一文了解LLM应用架构:从Prompt到Multi-Agent
程序员·llm·agent