辅助功能IOU(交并比)_3.2

  • 实现两个目标框的交并比
  • 候选框在多目标跟踪中的表达方式及相应转换方法

IOU(Intersection over Union),"交并比",是计算机视觉和图像处理中常用的一个评价指标,尤其在目标检测任务中用来衡量模型预测的目标框与真实目标框的重合程度。

具体计算方法如下:

  1. 首先计算预测框(Prediction Box)和真实框(Ground Truth Box)的交集区域面积(Intersection Area)。

  2. 然后分别计算预测框和真实框各自的总面积(Union Area)。

  3. 最后,IOU的值就是交集区域面积除以并集区域面积:

    IOU = (Intersection Area) / (Union Area) = (预测框与真实框交集面积) / (预测框面积 + 真实框面积 - 预测框与真实框交集面积)

IOU的取值范围在0到1之间,IOU值越接近1,说明预测框与真实框的重合度越高,模型预测效果越好;反之,IOU值越小,则表示预测效果越差。在许多目标检测任务中,通常会设定一个阈值(如0.5),只有IOU大于该阈值的结果才会被视为有效预测。

也是目标检测中使用的一个概念是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。在多目标跟踪中,用来判别跟踪框和目标检测框之间的相似度。

1.计算交并比

IoU是两个区域的交除以两个区域的并得出的结果

def iou(bb_test, bb_gt):
    """
    在两个box间计算IOU
    :param bb_test: box1 = [x1y1x2y2]
    :param bb_gt: box2 = [x1y1x2y2]
    :return: 交并比IOU
    """
    xx1 = np.maximum(bb_test[0], bb_gt[0])
    yy1 = np.maximum(bb_test[1], bb_gt[1])
    xx2 = np.minimum(bb_test[2], bb_gt[2])
    yy2 = np.minimum(bb_test[3], bb_gt[3])
    w = np.maximum(0., xx2 - xx1)
    h = np.maximum(0., yy2 - yy1)
    wh = w * h
    o = wh / ((bb_test[2] - bb_test[0]) * (bb_test[3] - bb_test[1]) + (bb_gt[2] - bb_gt[0]) * (
            bb_gt[3] - bb_gt[1]) - wh)
    return o

2.候选框的表示形式

在该项目中候选框有两种表示形式:

  • [x1,y1,x2,y2] 表示左上角坐标和右下角坐标,目标检测的结果以该方式表示
  • [x,y,s,r]表示中心点坐标,s 是面积尺度,r是纵横比,卡尔曼滤波器中进行运动估计是使用该方式。

这两种方式要进行相互的转换。

  • 将候选框从坐标形式转换为中心点坐标和面积的形式

    def convert_bbox_to_z(bbox):
    """
    将[x1,y1,x2,y2]形式的检测框转为滤波器的状态表示形式[x,y,s,r]。其中x,y是框的中心坐标,s是面积,尺度,r是宽高比
    :param bbox: [x1,y1,x2,y2] 分别是左上角坐标和右下角坐标
    :return: [ x, y, s, r ] 4行1列,其中x,y是box中心位置的坐标,s是面积,r是纵横比w/h
    """
    w = bbox[2] - bbox[0]
    h = bbox[3] - bbox[1]
    x = bbox[0] + w / 2.
    y = bbox[1] + h / 2.
    s = w * h
    r = w / float(h)
    return np.array([x, y, s, r]).reshape((4, 1))

  • 将候选框从中心面积的形式转换为坐标的形式

    def convert_x_to_bbox(x, score=None):
    """
    将[cx,cy,s,r]的目标框表示转为[x_min,y_min,x_max,y_max]的形式
    :param x:[ x, y, s, r ],其中x,y是box中心位置的坐标,s是面积,r
    :param score: 置信度
    :return:[x1,y1,x2,y2],左上角坐标和右下角坐标
    """
    w = np.sqrt(x[2] * x[3])
    h = x[2] / w
    if score is None:
    return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4))
    else:
    return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5))

相关推荐
如若1235 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
加密新世界7 小时前
优化 Solana 程序
人工智能·算法·计算机视觉
WeeJot嵌入式10 小时前
OpenCV:计算机视觉的瑞士军刀
计算机视觉
思通数科多模态大模型10 小时前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
学不会lostfound11 小时前
三、计算机视觉_05MTCNN人脸检测
pytorch·深度学习·计算机视觉·mtcnn·p-net·r-net·o-net
Mr.谢尔比12 小时前
李宏毅机器学习课程知识点摘要(1-5集)
人工智能·pytorch·深度学习·神经网络·算法·机器学习·计算机视觉
思通数科AI全行业智能NLP系统12 小时前
六大核心应用场景,解锁AI检测系统的智能安全之道
图像处理·人工智能·深度学习·安全·目标检测·计算机视觉·知识图谱
李歘歘16 小时前
Stable Diffusion经典应用场景
人工智能·深度学习·计算机视觉
饭碗、碗碗香16 小时前
OpenCV笔记:图像去噪对比
人工智能·笔记·opencv·计算机视觉
蚂蚁没问题s18 小时前
图像处理 - 色彩空间转换
图像处理·人工智能·算法·机器学习·计算机视觉