辅助功能IOU(交并比)_3.2

  • 实现两个目标框的交并比
  • 候选框在多目标跟踪中的表达方式及相应转换方法

IOU(Intersection over Union),"交并比",是计算机视觉和图像处理中常用的一个评价指标,尤其在目标检测任务中用来衡量模型预测的目标框与真实目标框的重合程度。

具体计算方法如下:

  1. 首先计算预测框(Prediction Box)和真实框(Ground Truth Box)的交集区域面积(Intersection Area)。

  2. 然后分别计算预测框和真实框各自的总面积(Union Area)。

  3. 最后,IOU的值就是交集区域面积除以并集区域面积:

    IOU = (Intersection Area) / (Union Area) = (预测框与真实框交集面积) / (预测框面积 + 真实框面积 - 预测框与真实框交集面积)

IOU的取值范围在0到1之间,IOU值越接近1,说明预测框与真实框的重合度越高,模型预测效果越好;反之,IOU值越小,则表示预测效果越差。在许多目标检测任务中,通常会设定一个阈值(如0.5),只有IOU大于该阈值的结果才会被视为有效预测。

也是目标检测中使用的一个概念是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。在多目标跟踪中,用来判别跟踪框和目标检测框之间的相似度。

1.计算交并比

IoU是两个区域的交除以两个区域的并得出的结果

复制代码
def iou(bb_test, bb_gt):
    """
    在两个box间计算IOU
    :param bb_test: box1 = [x1y1x2y2]
    :param bb_gt: box2 = [x1y1x2y2]
    :return: 交并比IOU
    """
    xx1 = np.maximum(bb_test[0], bb_gt[0])
    yy1 = np.maximum(bb_test[1], bb_gt[1])
    xx2 = np.minimum(bb_test[2], bb_gt[2])
    yy2 = np.minimum(bb_test[3], bb_gt[3])
    w = np.maximum(0., xx2 - xx1)
    h = np.maximum(0., yy2 - yy1)
    wh = w * h
    o = wh / ((bb_test[2] - bb_test[0]) * (bb_test[3] - bb_test[1]) + (bb_gt[2] - bb_gt[0]) * (
            bb_gt[3] - bb_gt[1]) - wh)
    return o

2.候选框的表示形式

在该项目中候选框有两种表示形式:

  • x1,y1,x2,y2\] 表示左上角坐标和右下角坐标,目标检测的结果以该方式表示

这两种方式要进行相互的转换。

  • 将候选框从坐标形式转换为中心点坐标和面积的形式

    def convert_bbox_to_z(bbox):
    """
    将[x1,y1,x2,y2]形式的检测框转为滤波器的状态表示形式[x,y,s,r]。其中x,y是框的中心坐标,s是面积,尺度,r是宽高比
    :param bbox: [x1,y1,x2,y2] 分别是左上角坐标和右下角坐标
    :return: [ x, y, s, r ] 4行1列,其中x,y是box中心位置的坐标,s是面积,r是纵横比w/h
    """
    w = bbox[2] - bbox[0]
    h = bbox[3] - bbox[1]
    x = bbox[0] + w / 2.
    y = bbox[1] + h / 2.
    s = w * h
    r = w / float(h)
    return np.array([x, y, s, r]).reshape((4, 1))

  • 将候选框从中心面积的形式转换为坐标的形式

    def convert_x_to_bbox(x, score=None):
    """
    将[cx,cy,s,r]的目标框表示转为[x_min,y_min,x_max,y_max]的形式
    :param x:[ x, y, s, r ],其中x,y是box中心位置的坐标,s是面积,r
    :param score: 置信度
    :return:[x1,y1,x2,y2],左上角坐标和右下角坐标
    """
    w = np.sqrt(x[2] * x[3])
    h = x[2] / w
    if score is None:
    return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4))
    else:
    return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5))

相关推荐
白熊1888 分钟前
【计算机视觉】论文精读《基于改进YOLOv3的火灾检测与识别》
人工智能·yolo·计算机视觉
asdfg12589631 小时前
深度估计中为什么需要已知相机基线(known camera baseline)?
人工智能·计算机视觉
jndingxin1 小时前
OpenCV CUDA模块中逐元素操作------算术运算
人工智能·opencv·计算机视觉
白熊1882 小时前
【图像生成大模型】Step-Video-T2V:下一代文本到视频生成技术
人工智能·opencv·yolo·计算机视觉·大模型·音视频
21级的乐未央2 小时前
论文阅读(四):Agglomerative Transformer for Human-Object Interaction Detection
论文阅读·深度学习·计算机视觉·transformer
知舟不叙2 小时前
基于OpenCV的实时文档扫描与矫正技术
人工智能·opencv·计算机视觉·透视变换·实时文档扫描与矫正
Blossom.1182 小时前
基于区块链技术的供应链溯源系统:重塑信任与透明度
服务器·网络·人工智能·目标检测·机器学习·计算机视觉·区块链
AndrewHZ3 小时前
【图像处理基石】OpenCV中都有哪些图像增强的工具?
图像处理·opencv·算法·计算机视觉·滤波·图像增强·颜色科学
carpell6 小时前
【语义分割专栏】:FCN原理篇
人工智能·深度学习·计算机视觉·语义分割
Blossom.11820 小时前
从虚拟现实到混合现实:沉浸式体验的未来之路
人工智能·目标检测·机器学习·计算机视觉·语音识别·vr·mr