数据集分享 | 稻田识别分割数据集、水稻虫害数据集

【导读】

在智慧农业全面加速的时代背景下,单一维度的监测手段已无法满足精细化管理的需求。农户不再只关注"有没有虫害",而是更关注"虫在哪、田块处于什么状态、该怎么处理"。因此,一个强大的农业视觉系统,必须同时具备虫害检测与稻田场景识别的能力。

本文将介绍两个面向农业AI实战的高质量数据集:

  • 一个聚焦水稻虫害分割检测,帮助系统精准识别田间微小虫体;
  • 一个面向稻田实例分割,实现农田状态全景理解。

两个数据集均采集自真实田间环境,标注精细,格式通用,已全面集成至 Coovally AI 平台,支持一键训练与部署,助力农业AI项目快速落地。

水稻虫害检测数据集

在我国农业种植体系中,虫害防控始终是粮食安全的核心任务。尤其是在大田种植管理中,高密度、低成本的虫害监测方案成为业界刚需。

  • 图像数量

共计 1997 张高分辨率实拍图像,覆盖水稻多个生长周期。

  • 标签类别

覆盖 4 类常见虫害目标:

  • 稻飞虱(Brown Planthopper)
  • 稻纵卷叶螟(Rice Leaf Folder)
  • 稻螟蛉(Rice Stem Borer)
  • 其他虫害(Others)
  • 场景特点

图像拍摄于真实农田,虫体普遍较小,背景复杂,具备极高检测挑战性。图像涵盖多天气、多光照、多虫龄状态,具备极强泛化性。

  • 标注格式

YOLO / COCO 双格式,支持 YOLOv8、RT-DETR、Faster R-CNN 等模型直接调用。

  • 应用方向
  • 病虫害监测预警
  • 智能农药喷洒系统
  • 无人机植保任务

稻田场景分割数据集

除了虫害检测,农田场景的识别与分类也同样重要。通过识别田块的种植状态,可实现精准施肥、自动播种、农机路径规划等多项智能任务。

  • 图像数量

共计 937 张航拍图像,来源于多个农业基地和种植时段。

  • 标签类别

4类田块类型像素级标注:

  • Rice-field:已种植水稻的田块
  • Empty-field:空闲或已翻耕的田块
  • Flooded-field:已灌水、准备插秧的田块
  • Harvesting-field:已完成收割的田块
  • 场景特点

图像拍摄于农田不同发展阶段,包含顺光/逆光、不同种植模式、不同地块结构等,具备强鲁棒性。

  • 标注格式

采用 COCO Segmentation 标注,可用于训练 DeepLabv3、SegFormer、Mask2Former 等语义分割模型。

  • 应用方向
  • 农田地块识别与分类
  • 播种/收割路径规划
  • 无人农机导航系统
  • 农业遥感图像解译任务

结语:双任务协同,让农业AI真正落地

虫害检测解决的是"哪里出了问题";田块分割解答的是"作物现在什么状态"。这两个任务结合,才能构建一个真正具备感知、分析、决策能力的智慧农业系统。

如果你正在开发农业视觉算法、农业无人机任务系统或农业数据平台,上述两个数据集将是你最值得参考和使用的资源。

立即访问 www.coovally.com,获取数据、模型、训练平台一站式服务,轻松打造你的农业AI解决方案!

相关推荐
淮北49413 分钟前
STL学习(十一、常用的算数算法和集合算法)
c++·vscode·学习·算法
糖葫芦君18 分钟前
玻尔兹曼分布与玻尔兹曼探索
人工智能·算法·机器学习
Monkey-旭4 小时前
Android Bitmap 完全指南:从基础到高级优化
android·java·人工智能·计算机视觉·kotlin·位图·bitmap
老鱼说AI5 小时前
循环神经网络RNN原理精讲,详细举例!
人工智能·rnn·深度学习·神经网络·自然语言处理·语音识别
花火|6 小时前
算法训练营day37 动态规划⑤ 完全背包 518. 零钱兑换 II、 377. 组合总和 Ⅳ、70. 爬楼梯 (进阶)
算法·动态规划
Neil今天也要学习6 小时前
永磁同步电机无速度算法--脉振方波注入法
算法
绿炮火6 小时前
【MATLAB】(二)基础知识
开发语言·算法·matlab
88号技师7 小时前
2025年6月最新SCI-灰熊脂肪增长优化算法Grizzly Bear Fat Increase-附Matlab免费代码
开发语言·人工智能·算法·matlab·优化算法
爱分享的飘哥7 小时前
第三十篇:AI的“思考引擎”:神经网络、损失与优化器的核心机制【总结前面2】
人工智能·深度学习·神经网络·优化器·损失函数·mlp·训练循环
玄月初二丶7 小时前
28. 找出字符串中第一个匹配项的下标
c语言·开发语言·数据结构·算法