特征提取技术实例

以下是一些简单的特征提取算法的Python代码示例:

1. 边缘检测(Sobel算子)

python 复制代码
import cv2
import numpy as np
# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)
# 使用Sobel算子进行边缘检测
sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0)
sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1)
# 计算梯度的幅度
gradient_magnitude = np.sqrt(sobel_x**2 + sobel_y**2)
# 展示结果
cv2.imshow('Sobel Edge Detection', gradient_magnitude)
cv2.waitKey(0)
cv2.destroyAllWindows()

2. 颜色直方图

python 复制代码
import cv2
import numpy as np
# 读取图像
image = cv2.imread('image.jpg')
# 转换到HSV空间
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# 定义HSV中蓝色的范围
blue_lower = np.array([110,50,50])
blue_upper = np.array([130,255,255])
# 设置HSV的阈值使得只有蓝色的部分显示
mask = cv2.inRange(hsv_image, blue_lower, blue_upper)
# 展示结果
cv2.imshow('Color Histogram', mask)
cv2.waitKey(0)
cv2.destroyAllWindows()

3. 局部二值模式(LBP)

python 复制代码
import cv2
import numpy as np
# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)
# 使用LBP算法
radius = 3
points = 8
lbp_image = cv2.circle(image, (radius, radius), radius, 1, -1)
lbp_result = cv2.circle(image.copy(), (radius, radius), radius, 0, -1)
# 展示结果
cv2.imshow('LBP', lbp_result)
cv2.waitKey(0)
cv2.destroyAllWindows()

4. HOG特征提取

python 复制代码
import cv2
import numpy as np
# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)
# 创建HOG描述符对象
winSize = (64, 128)
blockSize = (16, 16)
blockStride = (8, 8)
cellSize = (8, 8)
hog = cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, 9)
# 计算HOG特征
hog_features = hog.compute(image)
# 展示结果(转换为图像)
hog_image = cv2.normalize(hog_features, None, 0, 255, cv2.NORM_MINMAX)
hog_image = hog_image.astype('uint8')
cv2.imshow('HOG Features', hog_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

请注意,这些代码示例使用了OpenCV库,因此您需要先安装OpenCV才能运行这些代码。您可以通过pip安装OpenCV:

bash 复制代码
pip install opencv-python

这些示例仅用于教学目的,实际应用中可能需要更复杂的设置和优化。

相关推荐
飞哥数智坊9 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三9 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯10 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet12 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算13 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心13 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar14 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai14 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI15 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear16 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp