PyTorch深度学习快速入门(小土堆)

文章目录

16. 神经网络的基本骨架

forward:

复制代码
import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self,input):
        output=input+1
        return output

#创建Tudui的实例对象
tudui=Tudui()
#创建一个输入张量x
x=torch.tensor(1.0)
#将输入张量传递给tudui模型的foward()
output=tudui(x)
print(output)

输入: x

卷积

非线性

卷积

非线性

输出

17.卷积操作

复制代码
import torch
import torch.nn.functional as F

input=torch.tensor([[1,2,0,3,1],
                   [0,1,2,3,1],
                   [1,2,1,0,0],
                   [5,2,3,1,1],
                   [2,1,0,1,1]])

kernel=torch.tensor([[1,2,1],
                     [0,1,0],
                     [2,1,0]])

input=torch.reshape(input,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))

print(input.shape)
print(kernel.shape)

#卷积操作
#stride:移动步长
output=F.conv2d(input,kernel,stride=1)
print(output)

output2=F.conv2d(input,kernel,stride=2)
print(output2)

#padding:对输入张量四周进行填充
output3=F.conv2d(input,kernel,stride=1,padding=1)
print(output3)

18.卷积层

复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10("data1",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

    def forward(self,x):
        x=self.conv1(x)
        return x

tudui=Tudui()

writer=SummaryWriter("logs1")

step=0
for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    print(imgs.shape)
    print(output.shape)

    writer.add_images("input",imgs,step)

    output=torch.reshape(output,(-1,3,30,30))
    writer.add_images("output",output,step)
    step=step+1
相关推荐
观远数据9 分钟前
A Blueberry 签约观远数据,观远BI以一站式现代化驱动服饰企业新增长
大数据·数据库·人工智能·数据分析
IT_陈寒15 分钟前
JavaScript性能飞跃:5个V8引擎优化技巧让你的代码提速300%
前端·人工智能·后端
工藤学编程17 分钟前
零基础学AI大模型之大模型的“幻觉”
人工智能
史锦彪20 分钟前
用 PyTorch 实现 MNIST 手写数字识别:从入门到实践
人工智能·pytorch·python
董建光d23 分钟前
PyTorch 实现 MNIST 手写数字识别完整流程(含数据处理、模型构建与训练可视化)
人工智能·pytorch·python
cxr82824 分钟前
AI智能体赋能金融研究领域之仿真:流动性风暴下的高维战略 —— QT驱动的系统性失位与方舟部署蓝图
人工智能·qt·金融·ai赋能
却道天凉_好个秋33 分钟前
OpenCV(十):NumPy中的ROI
人工智能·opencv·numpy
fsnine2 小时前
Python人脸检测
人工智能·计算机视觉
追光的蜗牛丿3 小时前
目标检测中的ROI Pooling
人工智能·目标检测·计算机视觉
缘华工业智维6 小时前
工业设备预测性维护:能源成本降低的“隐藏钥匙”?
大数据·网络·人工智能