PyTorch深度学习快速入门(小土堆)

文章目录

16. 神经网络的基本骨架

forward:

复制代码
import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self,input):
        output=input+1
        return output

#创建Tudui的实例对象
tudui=Tudui()
#创建一个输入张量x
x=torch.tensor(1.0)
#将输入张量传递给tudui模型的foward()
output=tudui(x)
print(output)

输入: x

卷积

非线性

卷积

非线性

输出

17.卷积操作

复制代码
import torch
import torch.nn.functional as F

input=torch.tensor([[1,2,0,3,1],
                   [0,1,2,3,1],
                   [1,2,1,0,0],
                   [5,2,3,1,1],
                   [2,1,0,1,1]])

kernel=torch.tensor([[1,2,1],
                     [0,1,0],
                     [2,1,0]])

input=torch.reshape(input,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))

print(input.shape)
print(kernel.shape)

#卷积操作
#stride:移动步长
output=F.conv2d(input,kernel,stride=1)
print(output)

output2=F.conv2d(input,kernel,stride=2)
print(output2)

#padding:对输入张量四周进行填充
output3=F.conv2d(input,kernel,stride=1,padding=1)
print(output3)

18.卷积层

复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10("data1",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

    def forward(self,x):
        x=self.conv1(x)
        return x

tudui=Tudui()

writer=SummaryWriter("logs1")

step=0
for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    print(imgs.shape)
    print(output.shape)

    writer.add_images("input",imgs,step)

    output=torch.reshape(output,(-1,3,30,30))
    writer.add_images("output",output,step)
    step=step+1
相关推荐
晚霞的不甘1 小时前
CANN:华为全栈AI计算框架的深度解析(终极扩展版 · 完整篇)
人工智能·华为
lisw053 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_941623325 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛5 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI5 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus5 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声5 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API5 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
咚咚王者6 小时前
人工智能之数据分析 numpy:第十三章 工具衔接与迁移
人工智能·数据分析·numpy
咚咚王者6 小时前
人工智能之数据分析 numpy:第九章 数组运算(二)
人工智能·数据分析·numpy