PyTorch深度学习快速入门(小土堆)

文章目录

16. 神经网络的基本骨架

forward:

复制代码
import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self,input):
        output=input+1
        return output

#创建Tudui的实例对象
tudui=Tudui()
#创建一个输入张量x
x=torch.tensor(1.0)
#将输入张量传递给tudui模型的foward()
output=tudui(x)
print(output)

输入: x

卷积

非线性

卷积

非线性

输出

17.卷积操作

复制代码
import torch
import torch.nn.functional as F

input=torch.tensor([[1,2,0,3,1],
                   [0,1,2,3,1],
                   [1,2,1,0,0],
                   [5,2,3,1,1],
                   [2,1,0,1,1]])

kernel=torch.tensor([[1,2,1],
                     [0,1,0],
                     [2,1,0]])

input=torch.reshape(input,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))

print(input.shape)
print(kernel.shape)

#卷积操作
#stride:移动步长
output=F.conv2d(input,kernel,stride=1)
print(output)

output2=F.conv2d(input,kernel,stride=2)
print(output2)

#padding:对输入张量四周进行填充
output3=F.conv2d(input,kernel,stride=1,padding=1)
print(output3)

18.卷积层

复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10("data1",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

    def forward(self,x):
        x=self.conv1(x)
        return x

tudui=Tudui()

writer=SummaryWriter("logs1")

step=0
for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    print(imgs.shape)
    print(output.shape)

    writer.add_images("input",imgs,step)

    output=torch.reshape(output,(-1,3,30,30))
    writer.add_images("output",output,step)
    step=step+1
相关推荐
kevin 11 分钟前
合同盖章前,如何比对差异,确保纸质版与电子版100%一致?
人工智能·自动化·ocr
周杰伦_Jay2 分钟前
【Spring AI】Spring生态AI应用开发框架
人工智能·spring·rxjava
林林宋4 分钟前
kimi k2(开源模型,1T -32B-MOE)
人工智能
IT阳晨。4 分钟前
【CNN与卷积神经网络(吴恩达)】卷积神经网络学习笔记
笔记·深度学习·神经网络·cnn
安科瑞小许12 分钟前
高校宿舍电气安全新防线:浅析电气防火限流式保护技术
大数据·人工智能·安全·防火灾·限电流保护
Better Bench15 分钟前
ThinkStation PGX 与 RTX 4090 深度学习性能对比测试报告
人工智能·深度学习·显卡·联想·4090·计算性能·pgx
永远都不秃头的程序员(互关)16 分钟前
深度学习入门:图像分类的实战应用
人工智能·机器学习
Mintopia16 分钟前
🤖 AI 时代:Coding 如何约束智能体的任务正确率
人工智能·aigc·ai编程
kangk1217 分钟前
机器学习--序言
人工智能·机器学习
何小少19 分钟前
从 Copilot 到 “Lab-pilot“:大语言模型在科学研究领域的应用现状与未来展望
人工智能·语言模型·copilot