文章目录
day44:动态规划over,回文子串
647.回文子串
java
class Solution {
public int countSubstrings(String s) {
// 布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,
// 如果是dp[i][j]为true,否则为false
char[] chars = s.toCharArray();
int n = s.length();
boolean[][] dp = new boolean[n][n];
int ans = 0;
for (int i = n - 1; i >= 0; i--) {
for (int j = i; j < n; j++) {
if (chars[i] == chars[j]) {
if (j - i <= 1 || dp[i + 1][j - 1]) {
ans++;
dp[i][j] = true;
}
}
}
}
return ans;
}
}
516.最长回文子序列
java
class Solution {
public int longestPalindromeSubseq(String s) {
// dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]
int n = s.length();
char[] chars = s.toCharArray();
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) dp[i][i] = 1;
for (int i = n - 1; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
if (chars[i] == chars[j])
dp[i][j] = dp[i + 1][j - 1] + 2;
else
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
return dp[0][n - 1];
}
}