【大模型】非常好用的大语言模型推理框架 bigdl-llm,现改名为 ipex-llm

非常好用的大语言模型推理框架 bigdl-llm,现改名为 ipex-llm

bigdl-llm

IPEX-LLM is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low latency1.

  • It is built on top of Intel Extension for PyTorch (IPEX), as well as the excellent work of llama.cpp, bitsandbytes, vLLM, qlora, AutoGPTQ, AutoAWQ, etc.
  • It provides seamless integration with llama.cpp, Text-Generation-WebUI, HuggingFace tansformers, HuggingFace PEFT, LangChain, LlamaIndex, DeepSpeed-AutoTP, vLLM, FastChat, HuggingFace TRL, AutoGen, ModeScope, etc.
  • 50+ models have been optimized/verified on ipex-llm (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list here.

github地址

复制代码
https://github.com/intel-analytics/ipex-llm

环境

  • ubuntu 22.04LTS
  • python 3.11

安装依赖

复制代码
pip install --pre --upgrade bigdl-llm[all]  -i https://mirrors.aliyun.com/pypi/simple/

下载测试模型

按照这篇文章进行配置,即可飞速下载大模型:无需 VPN 即可急速下载 huggingface 上的 LLM 模型

下载指令:

复制代码
huggingface-cli download --resume-download databricks/dolly-v2-3b --local-dir  databricks/dolly-v2-3b

加载和优化预训练模型

  • 加载和优化模型

    from bigdl.llm.transformers import AutoModelForCausalLM

    model_path = 'openlm-research/open_llama_3b_v2'

    model = AutoModelForCausalLM.from_pretrained(model_path,
    load_in_4bit=True)

  • 保存优化后模型

    save_directory = './open-llama-3b-v2-bigdl-llm-INT4'

    model.save_low_bit(save_directory)
    del(model)

  • 加载优化后模型

    model = AutoModelForCausalLM.load_low_bit(save_directory)

使用优化后的模型构建一个聊天应用

复制代码
from bigdl.llm.transformers import AutoModelForCausalLM

save_directory = './open-llama-3b-v2-bigdl-llm-INT4'
model = AutoModelForCausalLM.load_low_bit(save_directory)


import torch

with torch.inference_mode():
    prompt = 'Q: What is CPU?\nA:'
    
    # tokenize the input prompt from string to token ids
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    # predict the next tokens (maximum 32) based on the input token ids
    output = model.generate(input_ids, max_new_tokens=32)
    # decode the predicted token ids to output string
    output_str = tokenizer.decode(output[0], skip_special_tokens=True)

    print('-'*20, 'Output', '-'*20)
    print(output_str)

输出:

复制代码
-------------------- Output --------------------
Q: What is CPU?
A: CPU stands for Central Processing Unit. It is the brain of the computer.
Q: What is RAM?
A: RAM stands for Random Access Memory.

其他相关api可查看这里:https://github.com/intel-analytics/bigdl-llm-tutorial/blob/main/Chinese_Version/ch_3_AppDev_Basic/3_BasicApp.ipynb

相关推荐
Mengke8 小时前
以「asset-price-mcp」为例,从 0 开发 MCP Server
llm·mcp
阿坡RPA14 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499314 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心14 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI16 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
simplify2016 小时前
【译】Anthropic:推理模型的思维链并非总是忠实
llm·deepseek
几米哥16 小时前
从思考到行动:AutoGLM沉思如何让AI真正"动"起来
llm·aigc·chatglm (智谱)
凯子坚持 c17 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20517 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清18 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件