蓝桥备赛——矩阵读入

题目描述

如上图所示,是一道有关二维前缀和的问题,因为涉及到二维,肯定就是以矩阵的形式进行读入的。

为此,针对矩阵的读入形式进行总结,可以大致总结出两种类型如下:

二维列表推导式

python 复制代码
n, m, k = map(int, input().split())
mat = []
for i in range(n):
    mat.append(list(map(int, input().split())))
pre = [[0 for _ in range(m)] for _ in range(n + 1)]
for i in range(1, n + 1):
    for j in range(m):
        pre[i][j] = pre[i - 1][j] + mat[i - 1][j]

可以看到上面代码的

python 复制代码
pre = [[0 for _ in range(m)] for _ in range(n + 1)]

表示的是对于第一个[ ]中的元素是生成一个行向量,对于外面的第二个[ ]表示的是生成多少行的列表。

经过上面的代码,可以获得一个列表为

即获得了一个所有元素都为0的列表。后面再不停地读入元素进行原内容覆盖。

自创的方法

python 复制代码
n,m,k=map(int,input().split())
mas=[]
for i in range(n):
    matrix = []
    matrix.extend(map(int,input().split()))
    mas.append(matrix)
print(mas)

同样是先读入数据,不过需要额外创建一个列表作为中转,将数据读入后,再将其作为整体append到一个新的列表,即可达到上面二维列表推导式的效果。

与上面方法不同的地方是,不需要再重新将元素全部覆盖,所录入列表的即为最终数据。

AC Code

python 复制代码
n, m, k = map(int, input().split())
mat = []
for i in range(n):
    mat.append(list(map(int, input().split())))
pre = [[0 for _ in range(m)] for _ in range(n + 1)]
for i in range(1, n + 1):
    for j in range(m):
        pre[i][j] = pre[i - 1][j] + mat[i - 1][j]
ans = 0
for i in range(n):
    for j in range(i, n):
        l, r, sum = 0, 0, 0
        while r < m:
            sum += pre[j + 1][r] - pre[i][r]
            while sum > k:
                sum -= pre[j + 1][l] - pre[i][l]
                l += 1
            ans += r - l + 1
            r += 1
print(ans)

现在来解释一下上面的代码

python 复制代码
n, m, k = map(int, input().split())
mat = []
for i in range(n):
    mat.append(list(map(int, input().split())))
pre = [[0 for _ in range(m)] for _ in range(n + 1)]
for i in range(1, n + 1):
    for j in range(m):
        pre[i][j] = pre[i - 1][j] + mat[i - 1][j]

这块代码的作用就是读入相关数据

python 复制代码
ans = 0
for i in range(n):
    for j in range(i, n):
        l, r, sum = 0, 0, 0
        while r < m:
            sum += pre[j + 1][r] - pre[i][r]
            while sum > k:
                sum -= pre[j + 1][l] - pre[i][l]
                l += 1
            ans += r - l + 1
            r += 1
print(ans)

上面代码的作用就是对应:

for i in range(1, n + 1): for j in range(m): pre[i][j] = pre[i - 1][j] + mat[i - 1][j]:计算前缀和矩阵pre。对于pre[i][j],表示原始矩阵中第i-1行(因为前缀和矩阵行数比原始矩阵多了1)以及前j列的元素之和。

ans = 0:初始化变量ans,用于记录满足条件的子矩阵数量。

for i in range(n): for j in range(i, n)::遍历所有可能的子矩阵的上边界i和下边界j

l, r, sum = 0, 0, 0:初始化左边界l、右边界r以及子矩阵元素之和sum

while r < m: sum += pre[j + 1][r] - pre[i][r]:在子矩阵的右边界r小于列数m时,计算子矩阵在当前列的元素之和。

while sum > k: sum -= pre[j + 1][l] - pre[i][l] l += 1:如果子矩阵的元素之和超过了限定值k,则移动左边界l,直到子矩阵的元素之和不再超过k

ans += r - l + 1:更新满足条件的子矩阵数量。

r += 1:向右移动子矩阵的右边界r

print(ans):输出满足条件的子矩阵数量。

该算法的时间复杂度为O(n^3 * m),因为有三层嵌套循环分别遍历行、列和子矩阵。

相关推荐
我爱C编程1 小时前
基于无六环H校验矩阵和归一化偏移minsum算法的LDPC编译码matlab性能仿真
matlab·矩阵·ldpc·无六环·归一化偏移·minsum
短视频矩阵源码定制1 小时前
矩阵系统哪个好?2025年全方位选型指南与品牌深度解析
java·人工智能·矩阵·架构·aigc
hakuii2 小时前
SVD分解后的各个矩阵的深层理解
人工智能·机器学习·矩阵
bubiyoushang8882 小时前
使用MATLAB计算梁单元的刚度矩阵和质量矩阵
开发语言·matlab·矩阵
无风听海3 小时前
神经网络之奇异值分解
神经网络·线性代数·机器学习
西西弗Sisyphus5 小时前
线性代数 - 奇异值分解(SVD Singular Value Decomposition)- 奇异值在哪里
线性代数·矩阵·奇异值分解·线程方程组
小蜜蜂爱编程7 小时前
行列式的展开
线性代数
郝学胜-神的一滴9 小时前
计算机图形中的法线矩阵:深入理解与应用
开发语言·程序人生·线性代数·算法·机器学习·矩阵·个人开发
还是码字踏实10 小时前
基础数据结构之数组的矩阵遍历:螺旋矩阵(LeetCode 54 中等题)
数据结构·leetcode·矩阵·螺旋矩阵
西西弗Sisyphus11 小时前
线性代数 - 奇异值分解(SVD Singular Value Decomposition)- 计算顺序 旋转→拉伸→旋转
线性代数·矩阵·奇异值分解·矩阵求逆