Windows系统安装PyTorch

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序,PyTorch的核心思想是使用张量(tensor)来表示数据,并通过动态计算图来构建和训练神经网络模型。这种动态计算图的方式与静态图相比,提供了更大的灵活性和易用性,用户可以在模型训练过程中实时地查看和修改计算图,从而更好地理解和优化模型的性能。

在安装PyTorch之前需要先安装Anaconda

安装Anaconda

在官网 Free Download | Anaconda 选择适合自己系统的下载方式

下载完成后启动安装程序, 在安装时最好不要安装在C盘,在之前未安装过Python的情况下可以把自动将Anaconda添加到环境变量中。

安装完成后在应用程序栏会出现Anaconda。

最后将Anaconda的安装路径和Anaconda的Scripts文件夹、Library文件夹路径添加到环境变量中的path中。

完成后在终端输入以下命令查看是否安装成功

复制代码
conda --version
创建虚拟环境

打开 Anaconda Prompt,输入一下命令创建一个新的虚拟环境

复制代码
conda create -n 环镜名称 python=3.x(选择python版本)

在出现以下内容时选择

复制代码
The following NEW packages will be INSTALLED:

  bzip2              pkgs/main/win-64::bzip2-1.0.8-h2bbff1b_5
  ca-certificates    pkgs/main/win-64::ca-certificates-2024.3.11-haa95532_0
  expat              pkgs/main/win-64::expat-2.5.0-hd77b12b_0
  libffi             pkgs/main/win-64::libffi-3.4.4-hd77b12b_0
  openssl            pkgs/main/win-64::openssl-3.0.13-h2bbff1b_0
  pip                pkgs/main/win-64::pip-23.3.1-py312haa95532_0
  python             pkgs/main/win-64::python-3.12.2-h1d929f7_0
  setuptools         pkgs/main/win-64::setuptools-68.2.2-py312haa95532_0
  sqlite             pkgs/main/win-64::sqlite-3.41.2-h2bbff1b_0
  tk                 pkgs/main/win-64::tk-8.6.12-h2bbff1b_0
  tzdata             pkgs/main/noarch::tzdata-2024a-h04d1e81_0
  vc                 pkgs/main/win-64::vc-14.2-h21ff451_1
  vs2015_runtime     pkgs/main/win-64::vs2015_runtime-14.27.29016-h5e58377_2
  wheel              pkgs/main/win-64::wheel-0.41.2-py312haa95532_0
  xz                 pkgs/main/win-64::xz-5.4.6-h8cc25b3_0
  zlib               pkgs/main/win-64::zlib-1.2.13-h8cc25b3_0


Proceed ([y]/n)? y

随后输入命令激活虚拟环境

复制代码
conda activate 环境名称

终端输入以下命令查看是否将环境建立成功

python 复制代码
conda info --envs
下载PyTorch

在官网 :Start Locally | PyTorch 选则适合自己电脑的安装方式,复制**Run this Command:**给出的安装代码,在选择时需要查看自己的显卡配置和驱动软件。

在终端输入以下命令查看显卡状态和CUDA信息。

复制代码
nvidia-smi

下载完成后输入命令查看是否安装成功

复制代码
> python
>> import torch
运行脚本

创建一个脚本

python 复制代码
import torch  
import numpy as np  
from torch.utils.data import TensorDataset  
  
x = np.random.random((4, 5))  
y = np.random.random((4, 1))  
  
# 将NumPy数组转换为PyTorch张量  
x_tensor = torch.from_numpy(x)  
y_tensor = torch.from_numpy(y)  
  
# 创建一个TensorDataset  
dataset = TensorDataset(x_tensor, y_tensor)  

for i in range(len(dataset)):  
    print(dataset[i])

在终端输入运行脚本

python 复制代码
python script.py

显示结果,PyTorch安装成功

python 复制代码
(tensor([0.7001, 0.8714, 0.4893, 0.3580, 0.2240], dtype=torch.float64), tensor([0.1313], dtype=torch.float64))
(tensor([0.0949, 0.5820, 0.4423, 0.5293, 0.0067], dtype=torch.float64), tensor([0.8980], dtype=torch.float64))
(tensor([0.0798, 0.1193, 0.3064, 0.6298, 0.5732], dtype=torch.float64), tensor([0.7218], dtype=torch.float64))
(tensor([0.2001, 0.4358, 0.7159, 0.8665, 0.2877], dtype=torch.float64), tensor([0.2442], dtype=torch.float64))
相关推荐
禹凕2 小时前
Python编程——进阶知识(MYSQL引导入门)
开发语言·python·mysql
阿钱真强道2 小时前
13 JetLinks MQTT:网关设备与网关子设备 - 温控设备场景
python·网络协议·harmonyos
袁气满满~_~2 小时前
深度学习笔记三
人工智能·笔记·深度学习
风象南2 小时前
OpenSpec 与 Spec Kit 使用对比:规范驱动开发该选哪个?
人工智能
我的xiaodoujiao2 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 47--设置Selenium以无头模式运行代码
python·学习·selenium·测试工具·pytest
草莓熊Lotso3 小时前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
Coder_Boy_4 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱6 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º8 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
寻星探路8 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https