Windows系统安装PyTorch

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序,PyTorch的核心思想是使用张量(tensor)来表示数据,并通过动态计算图来构建和训练神经网络模型。这种动态计算图的方式与静态图相比,提供了更大的灵活性和易用性,用户可以在模型训练过程中实时地查看和修改计算图,从而更好地理解和优化模型的性能。

在安装PyTorch之前需要先安装Anaconda

安装Anaconda

在官网 Free Download | Anaconda 选择适合自己系统的下载方式

下载完成后启动安装程序, 在安装时最好不要安装在C盘,在之前未安装过Python的情况下可以把自动将Anaconda添加到环境变量中。

安装完成后在应用程序栏会出现Anaconda。

最后将Anaconda的安装路径和Anaconda的Scripts文件夹、Library文件夹路径添加到环境变量中的path中。

完成后在终端输入以下命令查看是否安装成功

复制代码
conda --version
创建虚拟环境

打开 Anaconda Prompt,输入一下命令创建一个新的虚拟环境

复制代码
conda create -n 环镜名称 python=3.x(选择python版本)

在出现以下内容时选择

复制代码
The following NEW packages will be INSTALLED:

  bzip2              pkgs/main/win-64::bzip2-1.0.8-h2bbff1b_5
  ca-certificates    pkgs/main/win-64::ca-certificates-2024.3.11-haa95532_0
  expat              pkgs/main/win-64::expat-2.5.0-hd77b12b_0
  libffi             pkgs/main/win-64::libffi-3.4.4-hd77b12b_0
  openssl            pkgs/main/win-64::openssl-3.0.13-h2bbff1b_0
  pip                pkgs/main/win-64::pip-23.3.1-py312haa95532_0
  python             pkgs/main/win-64::python-3.12.2-h1d929f7_0
  setuptools         pkgs/main/win-64::setuptools-68.2.2-py312haa95532_0
  sqlite             pkgs/main/win-64::sqlite-3.41.2-h2bbff1b_0
  tk                 pkgs/main/win-64::tk-8.6.12-h2bbff1b_0
  tzdata             pkgs/main/noarch::tzdata-2024a-h04d1e81_0
  vc                 pkgs/main/win-64::vc-14.2-h21ff451_1
  vs2015_runtime     pkgs/main/win-64::vs2015_runtime-14.27.29016-h5e58377_2
  wheel              pkgs/main/win-64::wheel-0.41.2-py312haa95532_0
  xz                 pkgs/main/win-64::xz-5.4.6-h8cc25b3_0
  zlib               pkgs/main/win-64::zlib-1.2.13-h8cc25b3_0


Proceed ([y]/n)? y

随后输入命令激活虚拟环境

复制代码
conda activate 环境名称

终端输入以下命令查看是否将环境建立成功

python 复制代码
conda info --envs
下载PyTorch

在官网 :Start Locally | PyTorch 选则适合自己电脑的安装方式,复制**Run this Command:**给出的安装代码,在选择时需要查看自己的显卡配置和驱动软件。

在终端输入以下命令查看显卡状态和CUDA信息。

复制代码
nvidia-smi

下载完成后输入命令查看是否安装成功

复制代码
> python
>> import torch
运行脚本

创建一个脚本

python 复制代码
import torch  
import numpy as np  
from torch.utils.data import TensorDataset  
  
x = np.random.random((4, 5))  
y = np.random.random((4, 1))  
  
# 将NumPy数组转换为PyTorch张量  
x_tensor = torch.from_numpy(x)  
y_tensor = torch.from_numpy(y)  
  
# 创建一个TensorDataset  
dataset = TensorDataset(x_tensor, y_tensor)  

for i in range(len(dataset)):  
    print(dataset[i])

在终端输入运行脚本

python 复制代码
python script.py

显示结果,PyTorch安装成功

python 复制代码
(tensor([0.7001, 0.8714, 0.4893, 0.3580, 0.2240], dtype=torch.float64), tensor([0.1313], dtype=torch.float64))
(tensor([0.0949, 0.5820, 0.4423, 0.5293, 0.0067], dtype=torch.float64), tensor([0.8980], dtype=torch.float64))
(tensor([0.0798, 0.1193, 0.3064, 0.6298, 0.5732], dtype=torch.float64), tensor([0.7218], dtype=torch.float64))
(tensor([0.2001, 0.4358, 0.7159, 0.8665, 0.2877], dtype=torch.float64), tensor([0.2442], dtype=torch.float64))
相关推荐
测试者家园几秒前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
张较瘦_4 分钟前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
大模型真好玩5 分钟前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp
前端付豪13 分钟前
11、打造自己的 CLI 工具:从命令行到桌面效率神器
后端·python
前端付豪13 分钟前
12、用类写出更可控、更易扩展的爬虫框架🕷
后端·python
Baihai_IDP19 分钟前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原
人工智能·面试·llm
江太翁23 分钟前
Pytorch torch
人工智能·pytorch·python
拓端研究室39 分钟前
专题:2025即时零售与各类人群消费行为洞察报告|附400+份报告PDF、原数据表汇总下载
大数据·人工智能
网安INF43 分钟前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
Despacito0o44 分钟前
ESP32-s3摄像头驱动开发实战:从零搭建实时图像显示系统
人工智能·驱动开发·嵌入式硬件·音视频·嵌入式实时数据库