数据结构(六)——图的遍历

6.3 图的遍历

6.3.1 图的广度优先遍历

⼴度优先遍历(Breadth-First-Search, BFS)要点:

  1. 找到与⼀个顶点相邻的所有顶点

  2. 标记哪些顶点被访问过

  3. 需要⼀个辅助队

FirstNeighbor(G,x):求图G中顶点x的第⼀个邻接点,若有则返回顶点号。 若x没有邻接点或图中不存在x,则返回-1。

NextNeighbor(G,x,y):假设图G中顶点y是顶点x的⼀个邻接点,返回除y之外 顶点x的下⼀个邻接点的顶点号,若y是x的最后⼀个邻接点,则返回-1

cpp 复制代码
bool visited[MAX_VERTEX_NUM];	//访问标记数组 初始都为false

void BFSTraverse(Graph G){      // 对图G进行广度优先遍历
    for(i=0; i<G.vexnum; ++i)	
        visited[i]=FALSE;       //访问标记数组初始化
    InitQueue(Q);				//初始化辅助队列
    for(i=0; i<G.vexnum; ++i)	//从0号结点开始遍历
        if(!visited[i])         //对每个连通分量进行一次广度优先遍历
            BFS(G,i);           //vi未访问过,从vi开始BFS
}

//广度优先遍历
void BFS(Graph G,int v){        //从顶点v开始广度优先遍历图G
    visit(G,v);					//访问图G的结点v
    visited[v]=TREE;			//对v做已访问标记
    EnQueue(Q,v);				//顶点v入队列Q
    while(!isEmpty(Q)){
        DeQueue(Q,v);			//队列头节点出队并将头结点的值赋给v
        for(w=FirstNeighbor(G,v); w>=0; w=NextNeighbor(G,v,w)){
            //检测v的所有邻结点
            if(!visited[w]){    //w为v的尚未访问的邻接顶点
                visit(w);       //访问顶点w
                visited[w]=TREE;//对w做已访问标记
                EnQueue(Q,w);   //顶点w入队列
            }
        }
    }
}

复杂度分析

空间复杂度:最坏情况,辅助队列大小为O(|V|)

邻接矩阵存储的图:

访问 |V| 个顶点需要O(|V|)的时间

查找每个顶点的邻接点都需要O(|V|)的时间,⽽总共有|V|个顶点

时间复杂度= O(|V|^2)

邻接表存储的图:

访问 |V| 个顶点需要O(|V|)的时间

查找各个顶点的邻接点共需要O(|E|)的时间

时间复杂度= O(|V|+|E|)

广度优先生成树由广度优先 遍历过程确定。

由于邻接表的表示方式不唯⼀,因此基 于邻接表的广度优先生成树 也不唯⼀。

对非连通图的广度优先遍历,可得到广度优先生成森林


6.3.1 图的深度优先遍历

cpp 复制代码
bool visited[MAX_VERTEX_NUM];	//访问标记数组

// 对图G进行深度优先算法
void DFSTraverse(Graph G){
    for(v=0; v<G.vexnum; v++){	//初始化标记数组
        visited[v]=FALSE;
    }
    for(v=0; v<G.vexnum; v++){
        if(!visited[v])
            DFS(G,v);
    }
}

void DFS(Graph G,int v){     //从顶点v出发,深度优先遍历图G
    visit(G,v);              //访问顶点v
    visited[v]=TREE;         //设已访问标记
    for(w=FirstNeighbor(G,v);w>=0;w=NextNeighbor(G,v)){
        if(!visited[w])
            DFS(G,v);        //w为u的尚未访问的邻接顶点
    }
}

复杂度分析

空间复杂度:来自函数调用栈

最坏情况递归深度为O(|V|)

最好情况O(1)

时间复杂度=访问各结点所需时间+探索各条边所需时间

邻接矩阵存储的图:

访问|V|个顶点需要O(|V|)的时间

查找每个顶点的邻接点都需要O(|V|)的时间,而总共有|N个顶点时间复杂度=O(|V|^2)

邻接表存储的图:

访问V个顶点需要O(|V|)的时间

查找各个顶点的邻接点共需要O(E)的时间,时间复杂度=O(|V|+|E|)

同一个图的邻接矩阵表示方式唯一,因此深度优先遍历序列唯一

同一个图邻接表表示方式不唯一,因此深度优先遍历序列不唯一

图的遍历与图的连通性


相关推荐
im_AMBER1 小时前
算法笔记 09
c语言·数据结构·c++·笔记·学习·算法·排序算法
凯芸呢1 小时前
Java中的数组(续)
java·开发语言·数据结构·算法·青少年编程·排序算法·idea
寂静山林1 小时前
UVa 1030 Image Is Everything
算法
AI柠檬2 小时前
几种排序算法的实现和性能比较
数据结构·算法·c#·排序算法
weixin_429630262 小时前
第6章 支持向量机
算法·机器学习·支持向量机
SweetCode2 小时前
C++ 实现大数加法
开发语言·c++·算法
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
CodeWizard~3 小时前
AtCoder Beginner Contest 430赛后补题
c++·算法·图论
大大dxy大大3 小时前
机器学习-KNN算法示例
人工智能·算法·机器学习
zz0723204 小时前
数据结构 —— 栈
数据结构