【PSINS工具箱】EKF与UKF滤波

描述

对工具箱SINS/GPS,153例程的修改,将EKF和UKF放在一个文件里面,一次运行可以得到两个滤波的结果。

片段

运行截图



程序完整源代码

在有工具箱的情况下,直接运行此代码,即可得到结果

matlab 复制代码
% 基于PSINS工具箱的IMU数据生成与滤波
% date:2024-2-15
% Evand(evandworld@qq.com)
% Ver1
clear;clc;close all;
glvs
psinstypedef(153);
ts = 0.1;       % sampling interval
%% 轨迹设置
avp0 = [[0;0;0]; [0;0;0]; [0;0;0]]; % init avp
% trajectory segment setting
traj_ = [];
seg = trjsegment(traj_, 'init',         0);
seg = trjsegment(seg, 'uniform',      100);
seg = trjsegment(seg, 'accelerate',   10, traj_, 1);
seg = trjsegment(seg, 'uniform',      100);
seg = trjsegment(seg, 'coturnleft',   45, 2, traj_, 4);
seg = trjsegment(seg, 'climb',        10, 2, traj_, 50);
seg = trjsegment(seg, 'uniform',      100);
seg = trjsegment(seg, 'descent',      10, 2, traj_, 50);
seg = trjsegment(seg, 'uniform',      100);
seg = trjsegment(seg, 'coturnleft',   45, 2, traj_, 4);
seg = trjsegment(seg, 'uniform',      100);
seg = trjsegment(seg, 'deaccelerate', 5,  traj_, 2); %2
seg = trjsegment(seg, 'uniform',      100);
% generate, save & plot
trj = trjsimu(avp0, seg.wat, ts, 1);
% trjfile('trj10ms.mat', trj);
%% 初始化
% initial settings
[nn, ts, nts] = nnts(2, trj.ts);
imuerr = imuerrset(0.03, 100, 0.001, 5);
imu = imuadderr(trj.imu, imuerr);
davp0 = avperrset([0.5;-0.5;20], 0.1, [1;1;3]);
ins = insinit(avpadderr(trj.avp0,davp0), ts);
% KF filter
rk = poserrset([1;1;3]);
kf = kfinit(ins, davp0, imuerr, rk);
kf.Pmin = [avperrset(0.01,1e-4,0.1); gabias(1e-3, [1,10])].^2;  kf.pconstrain=1;
len = length(imu); [avp_ekf, xkpk] = prealloc(fix(len/nn), 10, 2*kf.n+1);
timebar(nn, len, 'KF'); 
ki = 1;
for k=1:nn:len-nn+1
    k1 = k+nn-1;  
    wvm = imu(k:k1,1:6);  t = imu(k1,end);
    ins = insupdate(ins, wvm);
    kf.Phikk_1 = kffk(ins);
    kf = kfupdate(kf);
    if mod(t,1)==0
        posGPS = trj.avp(k1,7:9)' + davp0(7:9).*randn(3,1);  % GPS pos simulation with some white noise
        kf = kfupdate(kf, ins.pos-posGPS, 'M');
        [kf, ins] = kffeedback(kf, ins, 1, 'avp');
        avp_ekf(ki,:) = [ins.avp', t];
        xkpk(ki,:) = [kf.xk; diag(kf.Pxk); t]';  ki = ki+1;
    end
    timebar;
end
avp_ekf(ki:end,:) = [];  xkpk(ki:end,:) = []; 
%% EKF show results
insplot(avp_ekf);
avperr = avpcmpplot(trj.avp, avp_ekf);
kfplot(xkpk, avperr, imuerr);

%% UKF filter
glvs
% psinstypedef('test_SINS_GPS_UKF_153_def');
[nn, ts, nts] = nnts(2, trj.ts);
imuerr = imuerrset(0.03, 100, 0.001, 5);
imu = imuadderr(trj.imu, imuerr);
davp0 = avperrset([0.5;-0.5;20], 0.1, [1;1;3]);
ins = insinit(avpadderr(trj.avp0,davp0), ts);

rk = poserrset([1;1;3]);
kf = kfinit(ins, davp0, imuerr, rk);
kf.fx = @largephiu15ukf;
len = length(imu); [avp_ukf, xkpk] = prealloc(fix(len/nn), 10, 2*kf.n+1);
timebar(nn, len, '15-state SINS/GPS UKF仿真,时间较长'); 
ki = 1;
for k=1:nn:len-nn+1
    k1 = k+nn-1;  
    wvm = imu(k:k1,1:6);  t = imu(k1,end);
    ins = insupdate(ins, wvm);
    kf.px = ins;
    kf = ukf(kf);
    if mod(t,1)==0
        posGPS = trj.avp(k1,7:9)' + davp0(7:9).*randn(3,1);  % GPS pos simulation with some white noise
        kf = ukf(kf, ins.pos-posGPS, 'M');  % UKF filter
        [kf, ins] = kffeedback(kf, ins, 1, 'avp');
        avp_ukf(ki,:) = [ins.avp', t];
        xkpk(ki,:) = [kf.xk; diag(kf.Pxk); t]';  ki = ki+1;
    end
    timebar;
end
avp_ukf(ki:end,:) = [];  xkpk(ki:end,:) = []; 

%% results
insplot(trj.avp);
imuplot(trj.imu);
figure;
plot3(trj.avp(:,7),trj.avp(:,8),trj.avp(:,9));
hold on
plot3(trj.avp(1,7),trj.avp(1,8),trj.avp(1,9),'*');
plot3(avp_ekf(:,7),avp_ekf(:,8),avp_ekf(:,9));
plot3(avp_ukf(:,7),avp_ukf(:,8),avp_ukf(:,9));
title('原创------3D轨迹图');
legend('真实值','起点','EKF滤波值','UKF滤波值');
% 误差绘图
% 误差曲线图与累积分布函数图,两种情况、三轴
figure;
subplot(3,2,1);
plot(1:10:len,avp_ekf(:,7)-trj.avp(1:10:len,7),1:10:len,avp_ukf(:,7)-trj.avp(1:10:len,7));
title('原创------X轴位置误差对比');legend('EKF滤波值','UKF滤波值');
subplot(3,2,3);
plot(1:10:len,avp_ekf(:,8)-trj.avp(1:10:len,8),1:10:len,avp_ukf(:,8)-trj.avp(1:10:len,8));
subplot(3,2,5);
plot(1:10:len,avp_ekf(:,9)-trj.avp(1:10:len,9),1:10:len,avp_ukf(:,9)-trj.avp(1:10:len,9));
subplot(3,2,2);
cdfplot(abs(avp_ekf(:,7)-trj.avp(1:10:len,7)));
hold on
cdfplot(abs(avp_ukf(:,7)-trj.avp(1:10:len,7)));
subplot(3,2,4);
cdfplot(abs(avp_ekf(:,8)-trj.avp(1:10:len,8)));
hold on
cdfplot(abs(avp_ukf(:,8)-trj.avp(1:10:len,8)));
subplot(3,2,6);
cdfplot(abs(avp_ekf(:,9)-trj.avp(1:10:len,9)));
hold on
cdfplot(abs(avp_ukf(:,9)-trj.avp(1:10:len,9)));
%% 误差输出
fprintf('ekf X轴位置误差最大值%d\n',max(abs(avp_ekf(:,7)-trj.avp(1:10:len,7))));
fprintf('ekf Y轴位置误差最大值%d\n',max(abs(avp_ekf(:,8)-trj.avp(1:10:len,8))));
fprintf('ekf Z轴位置误差最大值%d\n',max(abs(avp_ekf(:,9)-trj.avp(1:10:len,9))));
fprintf('ukf X轴位置误差最大值%d\n',max(abs(avp_ukf(:,7)-trj.avp(1:10:len,7))));
相关推荐
jghhh011 天前
基于幅度的和差测角程序
开发语言·matlab
yuan199971 天前
基于MATLAB的单目深度估计神经网络实现
开发语言·神经网络·matlab
今天吃饺子3 天前
如何用MATLAB调用python实现深度学习?
开发语言·人工智能·python·深度学习·matlab
硬汉嵌入式3 天前
专为 MATLAB 优化的 AI 助手MATLAB Copilot
人工智能·matlab·copilot
Dev7z3 天前
基于Matlab遗传算法与蚁群算法的风光储并网微电网容量优化研究
算法·matlab·蚁群算法·多能源微电网
jllllyuz4 天前
基于粒子群优化(PSO)的特征选择与支持向量机(SVM)分类
开发语言·算法·matlab
一只肥瘫瘫4 天前
基于MATLAB的滑膜观测器仿真搭建
单片机·嵌入式硬件·matlab
bubiyoushang8884 天前
MATLAB 实现多能源系统(MES)多目标优化
支持向量机·matlab·能源
算法如诗4 天前
**MATLAB R2025a** 环境下,基于 **双向时间卷积网络(BITCN)+ 双向长短期记忆网络(BiLSTM)** 的多特征分类预测完整实现
开发语言·网络·matlab