深度学习中不同学习率调整策略

1、StepLR

功能:固定等间隔调整学习率

主要参数:

step_size:调整间隔数

gamma:调整系数

调整方式:
l r = l r ∗ g a m m a lr=lr\ast gamma lr=lr∗gamma

2、MultiStepLR

功能:按给定间隔调整学习率

主要参数:

milestones:设定调整的时刻数

gamma:调整系数

调整方式:
l r = l r ∗ g a m m a lr=lr\ast gamma lr=lr∗gamma

3、ExponentialLR

功能:按指数衰减调整学习率

主要参数:

gamma:指数的底

调整方式:
l r = l r ∗ g a m m a e p o c h lr=lr\ast gamma^{epoch} lr=lr∗gammaepoch

4、CosineAnnealingLR

功能:预弦周期调整学习率

主要参数:

T_max:下降周期

eta_min:学习率下限

调整方式:
η t = η m i n + 1 2 ( η m a x − η m i n ) ( 1 + cos ⁡ T c u r T m a x Π ) \eta _{t} =\eta _{min}+\frac{1}{2} \left (\eta {max} -\eta {min}\right ) \left ( 1+\cos \frac{T{cur} }{T{max} }\Pi \right ) ηt=ηmin+21(ηmax−ηmin)(1+cosTmaxTcurΠ)

这里的T_max是以epoch为单位的,T_max对于余弦函数学习率的半周期(下降的半周期)

5、LinearLR

主要参数:

start_factor:起始factor

end_factor:终止factor

LinearLR是线性学习率,给定起始factor和最终的factor,LinearLR会在中间阶段做线性插值,比如学习率为0.1,起始factor为1,最终的factor为0.1。那么刚开始迭代时,学习率将为0.1,最终轮学习率为0.01。下面设置的总轮数total_iters为80,所以超过80时,学习率恒为0.01。

相关推荐
Shawn_Shawn2 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like4 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a4 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者5 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗5 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
盐焗西兰花5 小时前
鸿蒙学习实战之路-Reader Kit修改翻页方式字体大小及行间距最佳实践
学习·华为·harmonyos
QiZhang | UESTC5 小时前
学习日记day76
学习
yLDeveloper5 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
久邦科技5 小时前
20个免费电子书下载网站,实现电子书自由(2025持续更新)
学习