深度学习中不同学习率调整策略

1、StepLR

功能:固定等间隔调整学习率

主要参数:

step_size:调整间隔数

gamma:调整系数

调整方式:
l r = l r ∗ g a m m a lr=lr\ast gamma lr=lr∗gamma

2、MultiStepLR

功能:按给定间隔调整学习率

主要参数:

milestones:设定调整的时刻数

gamma:调整系数

调整方式:
l r = l r ∗ g a m m a lr=lr\ast gamma lr=lr∗gamma

3、ExponentialLR

功能:按指数衰减调整学习率

主要参数:

gamma:指数的底

调整方式:
l r = l r ∗ g a m m a e p o c h lr=lr\ast gamma^{epoch} lr=lr∗gammaepoch

4、CosineAnnealingLR

功能:预弦周期调整学习率

主要参数:

T_max:下降周期

eta_min:学习率下限

调整方式:
η t = η m i n + 1 2 ( η m a x − η m i n ) ( 1 + cos ⁡ T c u r T m a x Π ) \eta _{t} =\eta _{min}+\frac{1}{2} \left (\eta {max} -\eta {min}\right ) \left ( 1+\cos \frac{T{cur} }{T{max} }\Pi \right ) ηt=ηmin+21(ηmax−ηmin)(1+cosTmaxTcurΠ)

这里的T_max是以epoch为单位的,T_max对于余弦函数学习率的半周期(下降的半周期)

5、LinearLR

主要参数:

start_factor:起始factor

end_factor:终止factor

LinearLR是线性学习率,给定起始factor和最终的factor,LinearLR会在中间阶段做线性插值,比如学习率为0.1,起始factor为1,最终的factor为0.1。那么刚开始迭代时,学习率将为0.1,最终轮学习率为0.01。下面设置的总轮数total_iters为80,所以超过80时,学习率恒为0.01。

相关推荐
范桂飓5 分钟前
大规模 RDMA AI 组网技术创新:算法和可编程硬件的深度融合
人工智能
deflag18 分钟前
第P10周-Pytorch实现车牌号识别
人工智能·pytorch·yolo
pzx_00123 分钟前
【机器学习】K折交叉验证(K-Fold Cross-Validation)
人工智能·深度学习·算法·机器学习
海域云赵从友34 分钟前
助力DeepSeek私有化部署服务:让企业AI落地更简单、更安全
人工智能·安全
伊一大数据&人工智能学习日志1 小时前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
陈无左耳、1 小时前
HarmonyOS学习第4天: DevEco Studio初体验
学习·华为·harmonyos
刀客1231 小时前
python3+TensorFlow 2.x(六)自编码器
人工智能·python·tensorflow
大模型之路1 小时前
Grok-3:人工智能领域的新突破
人工智能·llm·grok-3
挣扎与觉醒中的技术人1 小时前
网络安全入门持续学习与进阶路径(一)
网络·c++·学习·程序人生·安全·web安全
闻道且行之1 小时前
LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型
人工智能·语言模型·llama·qlora·fsdp