深度学习中不同学习率调整策略

1、StepLR

功能:固定等间隔调整学习率

主要参数:

step_size:调整间隔数

gamma:调整系数

调整方式:
l r = l r ∗ g a m m a lr=lr\ast gamma lr=lr∗gamma

2、MultiStepLR

功能:按给定间隔调整学习率

主要参数:

milestones:设定调整的时刻数

gamma:调整系数

调整方式:
l r = l r ∗ g a m m a lr=lr\ast gamma lr=lr∗gamma

3、ExponentialLR

功能:按指数衰减调整学习率

主要参数:

gamma:指数的底

调整方式:
l r = l r ∗ g a m m a e p o c h lr=lr\ast gamma^{epoch} lr=lr∗gammaepoch

4、CosineAnnealingLR

功能:预弦周期调整学习率

主要参数:

T_max:下降周期

eta_min:学习率下限

调整方式:
η t = η m i n + 1 2 ( η m a x − η m i n ) ( 1 + cos ⁡ T c u r T m a x Π ) \eta _{t} =\eta _{min}+\frac{1}{2} \left (\eta {max} -\eta {min}\right ) \left ( 1+\cos \frac{T{cur} }{T{max} }\Pi \right ) ηt=ηmin+21(ηmax−ηmin)(1+cosTmaxTcurΠ)

这里的T_max是以epoch为单位的,T_max对于余弦函数学习率的半周期(下降的半周期)

5、LinearLR

主要参数:

start_factor:起始factor

end_factor:终止factor

LinearLR是线性学习率,给定起始factor和最终的factor,LinearLR会在中间阶段做线性插值,比如学习率为0.1,起始factor为1,最终的factor为0.1。那么刚开始迭代时,学习率将为0.1,最终轮学习率为0.01。下面设置的总轮数total_iters为80,所以超过80时,学习率恒为0.01。

相关推荐
TDengine (老段)1 小时前
从 ETL 到 Agentic AI:工业数据管理变革与 TDengine IDMP 的治理之道
数据库·数据仓库·人工智能·物联网·时序数据库·etl·tdengine
蓝桉8021 小时前
如何进行神经网络的模型训练(视频代码中的知识点记录)
人工智能·深度学习·神经网络
liliangcsdn2 小时前
Leiden社区发现算法的学习和示例
学习·数据分析·知识图谱
星期天要睡觉2 小时前
深度学习——数据增强(Data Augmentation)
人工智能·深度学习
笑脸惹桃花2 小时前
50系显卡训练深度学习YOLO等算法报错的解决方法
深度学习·算法·yolo·torch·cuda
南山二毛3 小时前
机器人控制器开发(导航算法——导航栈关联坐标系)
人工智能·架构·机器人
DKPT3 小时前
JVM中如何调优新生代和老生代?
java·jvm·笔记·学习·spring
phltxy3 小时前
JVM——Java虚拟机学习
java·jvm·学习
大数据张老师3 小时前
【案例】AI语音识别系统的标注分区策略
人工智能·系统架构·语音识别·架构设计·后端架构
xz2024102****3 小时前
吴恩达机器学习合集
人工智能·机器学习