Python人工智能:气象数据可视化的新工具

Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为的主流编程语言之一。

人工智能和大数据技术在许多行业都取得了颠覆式的成果,气象和海洋领域拥有海量的模式和观测数据,是大数据和人工智能应用的天然场景。Python也是当前进行机器学习和深度学习应用的最热门语言。对于的气象海洋领域的专业人员,Python是进行机器学习和深度学习工作的首选。

阅读全文点击:《Python人工智能:气象数据可视化的新工具》

专题一、Python软件的安装及入门

1、 Python入门和安装

1.1Python背景及其在气象海洋中的应用

1.2Anaconda解释和安装以及Jupyter配置

1.3Python基础语法

专题二、数据处理基础库

2、数据处理基础库

2.1 Numpy库

2.2 Pandas库

2.3 Scipy库

2.4 matplotlib

2.5常用数据格式的IO

专题三、人工智能

3、机器学习和深度学习基础理论

3.1机器学习和深度学习基础理论

3.1.1 AI简介及其在气象中的应用

3.1.2机器学习基本理论

3.1.3深度学习基本理论

3.2 sklearn和pytorch库

3.2.1 sklearn介绍、常用功能和机器学习方法

3.3.2 pytorch介绍、搭建 模型

专题四、气象领域中的机器学习应用

4、气象领域中的机器学习应用实例

4.1 GFS数值模式的风速预报订正

4.1.1 K近邻和决策树模型订正风速

4.1.2随机森林挑选重要特征

4.1.3梯度提升决策树订正风速

4.1.4 模型评估与对比

4.2 台风预报数据智能订正

4.2.1 CMA台风预报数据集介绍以及预处理

4.2.2随机森林模型订正台风预报

4.2.3 台风"烟花"预报效果检验

4.3机器学习预测风电场的风功率

4.3.1 lightGBM模型预测风功率

4.3.2调参利器---网格搜索GridSearch于K折验证

专题五、气象领域中的深度学习应用

5、气象领域中的深度学习应用实例

5.1深度学习预测浅水方程模式

5.1.1 数据介绍和获取

5.1.2 深度神经网络学习浅水方程

5.2 LSTM方法预测时间序列数据

5.2.1 LSTM方法原理介绍

5.2.2 LSTM方法预测气象序列数据

5.3深度学习convLSTM

5.3.1 时空预测convLSTM简介

5.3.2 风场或雷达回波的预测

相关推荐
聆风吟º5 分钟前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
寻星探路34 分钟前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
Codebee2 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º3 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys3 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56783 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子3 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder3 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
智驱力人工智能4 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144874 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能