卷积层+多个输入通道

卷积层+多输入输出通道

在深度学习中,卷积神经网络(CNN)通常用于处理具有多个输入通道的数据。当输入数据具有多个通道(例如彩色图像的RGB通道)时,卷积操作可以同时在每个通道上进行,并将各通道的结果相加,从而得到单个输出特征图。








相关推荐
咸鱼桨5 分钟前
《庐山派从入门到...》PWM板载蜂鸣器
人工智能·windows·python·k230·庐山派
强哥之神16 分钟前
Nexa AI发布OmniAudio-2.6B:一款快速的音频语言模型,专为边缘部署设计
人工智能·深度学习·机器学习·语言模型·自然语言处理·音视频·openai
yusaisai大鱼20 分钟前
tensorflow_probability与tensorflow版本依赖关系
人工智能·python·tensorflow
18号房客20 分钟前
一个简单的深度学习模型例程,使用Keras(基于TensorFlow)构建一个卷积神经网络(CNN)来分类MNIST手写数字数据集。
人工智能·深度学习·机器学习·生成对抗网络·语言模型·自然语言处理·tensorflow
神秘的土鸡28 分钟前
神经网络图像隐写术:用AI隐藏信息的艺术
人工智能·深度学习·神经网络
数据分析能量站29 分钟前
神经网络-LeNet
人工智能·深度学习·神经网络·机器学习
Jaly_W37 分钟前
用于航空发动机故障诊断的深度分层排序网络
人工智能·深度学习·故障诊断·航空发动机
小嗷犬39 分钟前
【论文笔记】Cross-lingual few-shot sign language recognition
论文阅读·人工智能·多模态·少样本·手语翻译
夜幕龙1 小时前
iDP3复现代码数据预处理全流程(二)——vis_dataset.py
人工智能·python·机器人
吃个糖糖1 小时前
36 Opencv SURF 关键点检测
人工智能·opencv·计算机视觉