卷积层+多个输入通道

卷积层+多输入输出通道

在深度学习中,卷积神经网络(CNN)通常用于处理具有多个输入通道的数据。当输入数据具有多个通道(例如彩色图像的RGB通道)时,卷积操作可以同时在每个通道上进行,并将各通道的结果相加,从而得到单个输出特征图。








相关推荐
RFID舜识物联网3 分钟前
RFID测温技术:电力设备安全监测的新利器
网络·人工智能·嵌入式硬件·物联网·安全
豪越大豪3 分钟前
豪越消防一体化安全管控平台新亮点: AI功能、智能运维以及消防处置知识库
大数据·人工智能·运维开发
9命怪猫14 分钟前
AI大模型-提示工程学习笔记13—自动提示工程师 (Automatic Prompt Engineer)
人工智能·ai·大模型·prompt
Daitu_Adam1 小时前
Windows11安装GPU版本Pytorch2.6教程
人工智能·pytorch·python·深度学习
阿正的梦工坊1 小时前
Grouped-Query Attention(GQA)详解: Pytorch实现
人工智能·pytorch·python
Best_Me071 小时前
【CVPR2024-工业异常检测】PromptAD:与只有正常样本的少样本异常检测的学习提示
人工智能·学习·算法·计算机视觉
山海青风1 小时前
从零开始玩转TensorFlow:小明的机器学习故事 4
人工智能·机器学习·tensorflow
YoseZang2 小时前
【机器学习】信息熵 交叉熵和相对熵
人工智能·深度学习·机器学习
Ronin-Lotus2 小时前
图像处理篇---图像处理中常见参数
图像处理·人工智能·信噪比·分贝·峰值信噪比·动态范围
数据智能老司机2 小时前
深度学习架构师手册——理解神经网络变换器(Transformers)
深度学习·架构