Python数据分析与可视化笔记 六 特征构建 特征提取 主成分分析 独立成分分析 线性判别分析

特征构建

特征构建是指从原始特征中人工构建新的特征。假设原始数据是表格数据,可以使用混合属性或者组合数学来创建新的特征。

特征提取

特征提取是在原始特征的基础上,自动构建新的特征,将原始数据转换为一组更具物理意义、统计意义或者核的特征。特征提取的主要方法包括主成分分析、独立成分分析和线性判别分析。

1.主成分分析 (Principal Component Analysis, PCA)

PCA的思想是通过坐标轴转换 ,寻找数据分布的最优子空间,从而达到降维去除数据间相关性的目的。在数学上,是先用原始数据协方差矩阵的前 N 个最大特征值对应的特征向量构成映射矩阵,然后原始矩阵左乘映射矩阵,从而对原始数据降维。

2.独立成分分析(Independent Component Analysis, ICA)

PCA特征转换降维,提取的是不相关的部分, ICA 获得的是相互独立的属性 。ICA 算法本质是寻找一个线性变换 Z = W_x,使得 Z 的各特征分量之间的独立性最大。ICA 比 PCA更能刻画变量的随机统计特性 ,且能抑制噪声。ICA 认为观测到的数据矩阵 X 是可以由未知的独立元矩阵 S 与未知的矩阵 A 相乘得到的。

3.线性判别分析( Linear Discriminant Analysis,LDA)

LDA 的原理是将带上标签的数据(点)通过投影的方法,投影到维度更低的空间,使得投影后的点会形成按类别区分,相同类别的点将会在投影后更接近。

相关推荐
大写-凌祁11 分钟前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
焦耳加热35 分钟前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
深空数字孪生37 分钟前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
wan5555cn43 分钟前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威2 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖2 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站2 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI2 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
雁于飞2 小时前
vscode中使用git、githup的基操
笔记·git·vscode·学习·elasticsearch·gitee·github
索迪迈科技2 小时前
INDEMIND亮相2025科技创变者大会,以机器人空间智能技术解锁具身智能新边界
人工智能·机器人·扫地机器人·空间智能·陪伴机器人