Python数据分析与可视化笔记 六 特征构建 特征提取 主成分分析 独立成分分析 线性判别分析

特征构建

特征构建是指从原始特征中人工构建新的特征。假设原始数据是表格数据,可以使用混合属性或者组合数学来创建新的特征。

特征提取

特征提取是在原始特征的基础上,自动构建新的特征,将原始数据转换为一组更具物理意义、统计意义或者核的特征。特征提取的主要方法包括主成分分析、独立成分分析和线性判别分析。

1.主成分分析 (Principal Component Analysis, PCA)

PCA的思想是通过坐标轴转换 ,寻找数据分布的最优子空间,从而达到降维去除数据间相关性的目的。在数学上,是先用原始数据协方差矩阵的前 N 个最大特征值对应的特征向量构成映射矩阵,然后原始矩阵左乘映射矩阵,从而对原始数据降维。

2.独立成分分析(Independent Component Analysis, ICA)

PCA特征转换降维,提取的是不相关的部分, ICA 获得的是相互独立的属性 。ICA 算法本质是寻找一个线性变换 Z = W_x,使得 Z 的各特征分量之间的独立性最大。ICA 比 PCA更能刻画变量的随机统计特性 ,且能抑制噪声。ICA 认为观测到的数据矩阵 X 是可以由未知的独立元矩阵 S 与未知的矩阵 A 相乘得到的。

3.线性判别分析( Linear Discriminant Analysis,LDA)

LDA 的原理是将带上标签的数据(点)通过投影的方法,投影到维度更低的空间,使得投影后的点会形成按类别区分,相同类别的点将会在投影后更接近。

相关推荐
2401_83623586几秒前
中安未来行驶证识别:以OCR智能力量,重构车辆证件数字化效率
人工智能·深度学习·ocr
X54先生(人文科技)几秒前
《元创力》开源项目库已经创建
人工智能·架构·开源软件
无心水1 分钟前
分布式定时任务与SELECT FOR UPDATE:从致命陷阱到优雅解决方案(实战案例+架构演进)
服务器·人工智能·分布式·后端·spring·架构·wpf
John_ToDebug4 分钟前
在代码的黄昏,建筑师诞生:从打字员到AI协作设计者的范式革命
人工智能·程序人生
deephub5 分钟前
机器学习特征工程:分类变量的数值化处理方法
python·机器学习·特征工程·分类变量
水中加点糖5 分钟前
小白都能看懂的——车牌检测与识别(最新版YOLO26快速入门)
人工智能·yolo·目标检测·计算机视觉·ai·车牌识别·lprnet
Yaozh、10 分钟前
【神经网络中的Dropout随机失活问题】
人工智能·深度学习·神经网络
wdfk_prog10 分钟前
[Linux]学习笔记系列 -- [drivers][tty]sysrq
linux·笔记·学习
墩墩冰18 分钟前
计算机图形学 实现直线段的反走样
人工智能·机器学习
Pyeako23 分钟前
深度学习--卷积神经网络(下)
人工智能·python·深度学习·卷积神经网络·数据增强·保存最优模型·数据预处理dataset