什么!Intel/AMD/Apple Silicon也能本地部署的Llama工具来了

主流的LLM都需要通过CUDA才能高效的运行在本地,但是随着Github上出现了Llama.cpp这个神器,一切都改变了。它通过AVX指令和MPI来实现CPU上并行计算,从而在本地计算机高效地运行各种主流的类Llama模型。同时它也支持metal,使得Apple Silicon的系统也能部署LLM。然而他的架构偏向于编译,安装部署较为复杂,于是衍生了Ollama之类的傻瓜式工具。而我要介绍的是Mozilla公司推出了Llamafile工具。

这个工具强大之处在于可以像Nvidia推出了一款 "Chat with RTX" ------原生支持Windows环境运行(而Ollama只有Windows10和11的预览版),但同时非常轻。

Model Size License llamafile
LLaVA 1.5 3.97 GB LLaMA 2 llava-v1.5-7b-q4.llamafile
Mistral-7B-Instruct 5.15 GB Apache 2.0 mistral-7b-instruct-v0.2.Q5_K_M.llamafile
Mixtral-8x7B-Instruct 30.03 GB Apache 2.0 mixtral-8x7b-instruct-v0.1.Q5_K_M.llamafile
WizardCoder-Python-34B 22.23 GB LLaMA 2 wizardcoder-python-34b-v1.0.Q5_K_M.llamafile
WizardCoder-Python-13B 7.33 GB LLaMA 2 wizardcoder-python-13b.llamafile
TinyLlama-1.1B 0.76 GB Apache 2.0 TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile
Rocket-3B 1.89 GB cc-by-sa-4.0 rocket-3b.Q5_K_M.llamafile
Phi-2 1.96 GB MIT phi-2.Q5_K_M.llamafile

支持的系统

  • Linux 2.6.18+ (i.e. every distro since RHEL5 c. 2007)
  • Darwin (macOS) 23.1.0+ [1] (GPU is only supported on ARM64)
  • Windows 8+ (AMD64 only)
  • FreeBSD 13+
  • NetBSD 9.2+ (AMD64 only)
  • OpenBSD 7+ (AMD64 only)

演示

文本生成

css 复制代码
./mistral-7b-instruct-v0.2.Q5_K_M.llamafile -ngl 9999 --temp 0.7 -p '[INST]Write a story about llamas[/INST]'

代码生成

bash 复制代码
./wizardcoder-python-13b.llamafile -ngl 9999 --temp 0 -e -r '```\n' -p '```c\nvoid *memcpy_sse2(char *dst, const char *src, size_t size) {\n'

VQA

css 复制代码
./llava-v1.5-7b-q4.llamafile -ngl 9999 --temp 0.2 --image lemurs.jpg -e -p '### User: What do you see?\n### Assistant:'

WEB 服务

bash 复制代码
./mistral-7b-instruct-v0.2.Q5_K_M.llamafile -ngl 9999

访问 http://localhost:8080

想要只用CPU运行,只需要-ngl 0--gpu disable

支持 Python版的OpenAI SDK

ini 复制代码
#!/usr/bin/env python3
from openai import OpenAI
client = OpenAI(
    base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
    api_key = "sk-no-key-required"
)
completion = client.chat.completions.create(
    model="LLaMA_CPP",
    messages=[
        {"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
        {"role": "user", "content": "Write a limerick about python exceptions"}
    ]
)
print(completion.choices[0].message)

或是 REST API请求

arduino 复制代码
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
  "model": "LLaMA_CPP",
  "messages": [
      {
          "role": "system",
          "content": "You are LLAMAfile, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."
      },
      {
          "role": "user",
          "content": "Write a limerick about python exceptions"
      }
    ]
}' | python3 -c '
import json
import sys
json.dump(json.load(sys.stdin), sys.stdout, indent=2)
print()

'

存在问题

Windows的exe只能支持4GB大小,所以5G以上需要使用github上的release文件和LLM的Guff文件。

原文: Unfortunately, Windows users cannot make use of many of these example llamafiles because Windows has a maximum executable file size of 4GB, and all of these examples exceed that size. (The LLaVA llamafile works on Windows because it is 30MB shy of the size limit.) But don't lose heart: llamafile allows you to use external weights; this is described later in this document.

我在WSL中运行,会被杀毒误杀

在Windows环境中GPU运行会乱码输出,但是CPU运行能正常显示,且在WSL环境下GPU模式可以正常输出。尚不清楚原因。

相关推荐
TOPGUS1 小时前
谷歌将移除部分搜索功能:面对AI时代的一次功能精简策略
前端·人工智能·搜索引擎·aigc·seo·数字营销
avi91112 小时前
简单的Gradio实现一个统计界面+日志输出
python·aigc·gradio
aitoolhub2 小时前
自媒体视觉物料高效创作新路径:稿定设计如何用AI重构内容生产逻辑
大数据·人工智能·aigc·媒体
audyxiao0013 小时前
AAAI 2025论文分享|Agent4Edu:基于大语言模型生成式智能体的个性化学习模拟器
llm·aaai·智能体·智慧教育·个性化学习
智界前沿3 小时前
告别随机生成!AIGC 视频广告级精度为工业视频注入可视化新动能
人工智能·aigc
CoderJia程序员甲19 小时前
GitHub 热榜项目 - 日榜(2026-01-19)
git·ai·开源·llm·github
DO_Community1 天前
技术解码:Character.ai 如何实现大模型实时推理性能 2 倍提升
人工智能·算法·llm·aigc·moe·aiter
YuTaoShao1 天前
提示词工程已死,上下文工程当立
llm·agent·智能体·提示词工程·上下文工程
一个处女座的程序猿1 天前
LLMs之MoE之Thinking:LongCat-Flash-Thinking-2601的简介、安装和使用方法、案例应用之详细攻略
llm·moe·thinking
眠りたいです1 天前
使用LangChain进行AI应用构建-快速上手,定义模型和调用工具部分
人工智能·langchain·llm·ollama·python3.13