【信号处理】基于变分自编码器(VAE)的脑电信号增强典型方法实现(tensorflow)

关于

在脑电信号分析处理任务中,数据不均衡是一个常见的问题。针对数据不均衡,传统方法有过采样和欠采样方法来应对,但是效果有限。本项目通过变分自编码器对脑电信号进行生成增强,提高增强样本的多样性,从而提高最终的后端分析性能。

EEG数据增强方法参考:https://dlib.phenikaa-uni.edu.vn/bitstream/PNK/8319/1/Data%20Augmentation%20techniques%20in%20time%20series%20domain%20a%20survey%20and%20taxonomy-2023.pdf

工具

数据集下载地址: BCI Competition IV

方法实现

加载必要的库函数和数据

python 复制代码
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import glob

from sklearn.model_selection import train_test_split

from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, BatchNormalization, LeakyReLU, Dense, Lambda, Reshape, Flatten
from tensorflow.keras.models import Model
from tensorflow.keras.losses import mse
from tensorflow.keras.optimizers import Adam

from tensorflow.keras.callbacks import EarlyStopping

from tensorflow.keras import backend as K



direc = r'bci_iv_2a_data/A01/train/0/'     #data directory

train_dataset = []
train_label = []

test_dataset = []
test_label = []

files = os.listdir(direc)
for j, name in enumerate(files):
    filename = glob.glob(direc + '/'+ name)
    df = pd.read_csv(filename[0], index_col=None, header=None)
    df = df.drop(0, axis=1)     #dropping column of channel names
    df = df.iloc[:,0:1000]      #taking 1000 timesteps
    train_dataset.append(np.array(df))
            


train_dataset = np.array(train_dataset)
train_data = np.expand_dims(train_dataset,axis=-1)

VAE模型>编码器定义

python 复制代码
# VAE model
input_shape=(X_train.shape[1:])
batch_size = 32
kernel_size = 5
filters = 16
latent_dim = 2
epochs = 1000

# reparameterization
def sampling(args): 
    z_mean, z_log_var = args
    batch = K.shape(z_mean)[0]
    dim = K.int_shape(z_mean)[1]
    epsilon = K.random_normal(shape=(batch, dim))
    return z_mean + K.exp(0.5 * z_log_var) * epsilon




# encoder
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs

filters = filters* 2
x = Conv2D(filters=filters,kernel_size=(1, 50),strides=(1,25),)(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)


filters = filters* 2
x = Conv2D(filters=filters,kernel_size=(22, 1),)(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)

shape = K.int_shape(x)

x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
z_log_var = z_log_var + 1e-8 

# reparameterization
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var]) 

encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()

VAE模型>解码器定义

python 复制代码
# decoder 
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(shape[1] * shape[2] * shape[3], activation='relu')(latent_inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)

x = Conv2DTranspose(filters=filters,kernel_size=(22, 1),activation='relu',)(x)
x = BatchNormalization()(x)

filters = filters// 2
x = Conv2DTranspose(filters=filters,kernel_size=(1, 50),activation='relu',strides=(1,25))(x)
x = BatchNormalization()(x)

filters = filters// 2
outputs = Conv2DTranspose(filters=1,kernel_size=kernel_size,padding='same',name='decoder_output')(x)

decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
python 复制代码
# VAE model (merging encoder and decoder)
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')
vae.summary()

定义损失函数

python 复制代码
# defining Custom loss function 
reconstruction_loss = mse(K.flatten(inputs), K.flatten(outputs))

reconstruction_loss *= input_shape[0] * input_shape[1]
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
vae.add_loss(vae_loss)

#optimizer
optimizer = Adam(learning_rate=0.001, beta_1=0.5, beta_2=0.999)

# compiling vae
vae.compile(optimizer=optimizer, loss=None)
vae.summary()

模型配置和训练

python 复制代码
# early stopping callback
callbacks = EarlyStopping(monitor = 'val_loss',
                          mode='min',
                          patience =50,
                          verbose = 1,
                          restore_best_weights = True)


# fit vae model
history = vae.fit(X_train,X_train,
            epochs=epochs,
            batch_size=batch_size,
            validation_data=(X_test, X_test),callbacks=callbacks)

训练流程可视化

python 复制代码
# loss curves
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('loss curves')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.show()

中间隐空间特征2D可视化

python 复制代码
# 2D plot of the classes in latent space
z_m, _, _ = encoder.predict(X_test,batch_size=batch_size)
plt.figure(figsize=(12, 10))
plt.scatter(z_m[:, 0], z_m[:, 1], c=X_test[:,0,0,0])
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.show()

数据合成

python 复制代码
# predicting on validation data
pred=vae.predict(X_test)

代码获取

附文章底部;

相关项目开发,问题咨询,欢迎交流沟通。

相关推荐
Loo国昌1 分钟前
【LangChain1.0】第九阶段:文档处理工程 (LlamaIndex)
人工智能·后端·python·算法·langchain
罗伯特_十三4 分钟前
Spring AI ChatModel 使用记录
java·人工智能·spring
AIbase20245 分钟前
AI时代品牌流量争夺战:如何通过“品牌AI搜索监控”提升GEO可见度?
人工智能·chatgpt
老鱼说AI19 分钟前
论文精读第七期:告别昂贵的人工标注!Math-Shepherd:如何用“零成本”自动化过程监督,让大模型数学能力暴涨?
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·boosting
好奇龙猫26 分钟前
【人工智能学习-AI入试相关题目练习-第九次】
人工智能·学习
aspxiy1 小时前
知识求解器:教会大型语言模型从知识图谱中搜索领域知识
人工智能·语言模型·自然语言处理·知识图谱
梦想是成为算法高手1 小时前
带你从入门到精通——知识图谱(一. 知识图谱入门)
人工智能·pytorch·python·深度学习·神经网络·知识图谱
沛沛老爹1 小时前
从Web到AI:行业专属Agent Skills生态系统技术演进实战
java·开发语言·前端·vue.js·人工智能·rag·企业转型
B站计算机毕业设计超人1 小时前
计算机毕业设计Python+大模型音乐推荐系统 音乐数据分析 音乐可视化 音乐爬虫 知识图谱 大数据毕业设计
人工智能·hadoop·爬虫·python·数据分析·知识图谱·课程设计