【信号处理】基于变分自编码器(VAE)的脑电信号增强典型方法实现(tensorflow)

关于

在脑电信号分析处理任务中,数据不均衡是一个常见的问题。针对数据不均衡,传统方法有过采样和欠采样方法来应对,但是效果有限。本项目通过变分自编码器对脑电信号进行生成增强,提高增强样本的多样性,从而提高最终的后端分析性能。

EEG数据增强方法参考:https://dlib.phenikaa-uni.edu.vn/bitstream/PNK/8319/1/Data%20Augmentation%20techniques%20in%20time%20series%20domain%20a%20survey%20and%20taxonomy-2023.pdf

工具

数据集下载地址: BCI Competition IV

方法实现

加载必要的库函数和数据

python 复制代码
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import glob

from sklearn.model_selection import train_test_split

from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, BatchNormalization, LeakyReLU, Dense, Lambda, Reshape, Flatten
from tensorflow.keras.models import Model
from tensorflow.keras.losses import mse
from tensorflow.keras.optimizers import Adam

from tensorflow.keras.callbacks import EarlyStopping

from tensorflow.keras import backend as K



direc = r'bci_iv_2a_data/A01/train/0/'     #data directory

train_dataset = []
train_label = []

test_dataset = []
test_label = []

files = os.listdir(direc)
for j, name in enumerate(files):
    filename = glob.glob(direc + '/'+ name)
    df = pd.read_csv(filename[0], index_col=None, header=None)
    df = df.drop(0, axis=1)     #dropping column of channel names
    df = df.iloc[:,0:1000]      #taking 1000 timesteps
    train_dataset.append(np.array(df))
            


train_dataset = np.array(train_dataset)
train_data = np.expand_dims(train_dataset,axis=-1)

VAE模型>编码器定义

python 复制代码
# VAE model
input_shape=(X_train.shape[1:])
batch_size = 32
kernel_size = 5
filters = 16
latent_dim = 2
epochs = 1000

# reparameterization
def sampling(args): 
    z_mean, z_log_var = args
    batch = K.shape(z_mean)[0]
    dim = K.int_shape(z_mean)[1]
    epsilon = K.random_normal(shape=(batch, dim))
    return z_mean + K.exp(0.5 * z_log_var) * epsilon




# encoder
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs

filters = filters* 2
x = Conv2D(filters=filters,kernel_size=(1, 50),strides=(1,25),)(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)


filters = filters* 2
x = Conv2D(filters=filters,kernel_size=(22, 1),)(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)

shape = K.int_shape(x)

x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
z_log_var = z_log_var + 1e-8 

# reparameterization
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var]) 

encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()

VAE模型>解码器定义

python 复制代码
# decoder 
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(shape[1] * shape[2] * shape[3], activation='relu')(latent_inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)

x = Conv2DTranspose(filters=filters,kernel_size=(22, 1),activation='relu',)(x)
x = BatchNormalization()(x)

filters = filters// 2
x = Conv2DTranspose(filters=filters,kernel_size=(1, 50),activation='relu',strides=(1,25))(x)
x = BatchNormalization()(x)

filters = filters// 2
outputs = Conv2DTranspose(filters=1,kernel_size=kernel_size,padding='same',name='decoder_output')(x)

decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
python 复制代码
# VAE model (merging encoder and decoder)
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')
vae.summary()

定义损失函数

python 复制代码
# defining Custom loss function 
reconstruction_loss = mse(K.flatten(inputs), K.flatten(outputs))

reconstruction_loss *= input_shape[0] * input_shape[1]
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
vae.add_loss(vae_loss)

#optimizer
optimizer = Adam(learning_rate=0.001, beta_1=0.5, beta_2=0.999)

# compiling vae
vae.compile(optimizer=optimizer, loss=None)
vae.summary()

模型配置和训练

python 复制代码
# early stopping callback
callbacks = EarlyStopping(monitor = 'val_loss',
                          mode='min',
                          patience =50,
                          verbose = 1,
                          restore_best_weights = True)


# fit vae model
history = vae.fit(X_train,X_train,
            epochs=epochs,
            batch_size=batch_size,
            validation_data=(X_test, X_test),callbacks=callbacks)

训练流程可视化

python 复制代码
# loss curves
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('loss curves')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.show()

中间隐空间特征2D可视化

python 复制代码
# 2D plot of the classes in latent space
z_m, _, _ = encoder.predict(X_test,batch_size=batch_size)
plt.figure(figsize=(12, 10))
plt.scatter(z_m[:, 0], z_m[:, 1], c=X_test[:,0,0,0])
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.show()

数据合成

python 复制代码
# predicting on validation data
pred=vae.predict(X_test)

代码获取

附文章底部;

相关项目开发,问题咨询,欢迎交流沟通。

相关推荐
Dev7z36 分钟前
基于LSTM神经网络的共享单车需求预测系统设计与实现
人工智能·神经网络·lstm
Open Source Thoughts40 分钟前
OpenClaw.ai:Agentic AI 时代的“SpringFramework”时刻
java·人工智能·spring·prompt·开源软件·agi·ai-native
Loo国昌1 小时前
【AI应用开发实战】 03_LangGraph运行时与状态图编排:从直接执行到图编排的演进之路
人工智能·后端·python·自然语言处理·prompt
njsgcs1 小时前
ollama 报错dial tcp ipv6:443: connectex: A connection attempt failed because 解决办法
人工智能
眼镜哥(with glasses)2 小时前
0215笔记-语言模型,提问范式与 Token
人工智能·笔记·语言模型
AIMarketing2 小时前
2026年Q1光引GEO 2.0技术原理解析
人工智能
狮子座明仔2 小时前
体验式强化学习:让模型学会“吃一堑长一智“
人工智能·深度学习·自然语言处理
冬奇Lab2 小时前
一天一个开源项目(第30篇):banana-slides - 基于 nano banana pro 的原生 AI PPT 生成应用
人工智能·开源·aigc
冬奇Lab3 小时前
Plugin 扩展实战:增强 Claude Code 的能力
人工智能·ai编程·claude
大好人ooo3 小时前
企业级LLM评估与测试
人工智能