【信号处理】基于变分自编码器(VAE)的脑电信号增强典型方法实现(tensorflow)

关于

在脑电信号分析处理任务中,数据不均衡是一个常见的问题。针对数据不均衡,传统方法有过采样和欠采样方法来应对,但是效果有限。本项目通过变分自编码器对脑电信号进行生成增强,提高增强样本的多样性,从而提高最终的后端分析性能。

EEG数据增强方法参考:https://dlib.phenikaa-uni.edu.vn/bitstream/PNK/8319/1/Data%20Augmentation%20techniques%20in%20time%20series%20domain%20a%20survey%20and%20taxonomy-2023.pdf

工具

数据集下载地址: BCI Competition IV

方法实现

加载必要的库函数和数据

python 复制代码
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import glob

from sklearn.model_selection import train_test_split

from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, BatchNormalization, LeakyReLU, Dense, Lambda, Reshape, Flatten
from tensorflow.keras.models import Model
from tensorflow.keras.losses import mse
from tensorflow.keras.optimizers import Adam

from tensorflow.keras.callbacks import EarlyStopping

from tensorflow.keras import backend as K



direc = r'bci_iv_2a_data/A01/train/0/'     #data directory

train_dataset = []
train_label = []

test_dataset = []
test_label = []

files = os.listdir(direc)
for j, name in enumerate(files):
    filename = glob.glob(direc + '/'+ name)
    df = pd.read_csv(filename[0], index_col=None, header=None)
    df = df.drop(0, axis=1)     #dropping column of channel names
    df = df.iloc[:,0:1000]      #taking 1000 timesteps
    train_dataset.append(np.array(df))
            


train_dataset = np.array(train_dataset)
train_data = np.expand_dims(train_dataset,axis=-1)

VAE模型>编码器定义

python 复制代码
# VAE model
input_shape=(X_train.shape[1:])
batch_size = 32
kernel_size = 5
filters = 16
latent_dim = 2
epochs = 1000

# reparameterization
def sampling(args): 
    z_mean, z_log_var = args
    batch = K.shape(z_mean)[0]
    dim = K.int_shape(z_mean)[1]
    epsilon = K.random_normal(shape=(batch, dim))
    return z_mean + K.exp(0.5 * z_log_var) * epsilon




# encoder
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs

filters = filters* 2
x = Conv2D(filters=filters,kernel_size=(1, 50),strides=(1,25),)(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)


filters = filters* 2
x = Conv2D(filters=filters,kernel_size=(22, 1),)(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)

shape = K.int_shape(x)

x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
z_log_var = z_log_var + 1e-8 

# reparameterization
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var]) 

encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()

VAE模型>解码器定义

python 复制代码
# decoder 
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(shape[1] * shape[2] * shape[3], activation='relu')(latent_inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)

x = Conv2DTranspose(filters=filters,kernel_size=(22, 1),activation='relu',)(x)
x = BatchNormalization()(x)

filters = filters// 2
x = Conv2DTranspose(filters=filters,kernel_size=(1, 50),activation='relu',strides=(1,25))(x)
x = BatchNormalization()(x)

filters = filters// 2
outputs = Conv2DTranspose(filters=1,kernel_size=kernel_size,padding='same',name='decoder_output')(x)

decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
python 复制代码
# VAE model (merging encoder and decoder)
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')
vae.summary()

定义损失函数

python 复制代码
# defining Custom loss function 
reconstruction_loss = mse(K.flatten(inputs), K.flatten(outputs))

reconstruction_loss *= input_shape[0] * input_shape[1]
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
vae.add_loss(vae_loss)

#optimizer
optimizer = Adam(learning_rate=0.001, beta_1=0.5, beta_2=0.999)

# compiling vae
vae.compile(optimizer=optimizer, loss=None)
vae.summary()

模型配置和训练

python 复制代码
# early stopping callback
callbacks = EarlyStopping(monitor = 'val_loss',
                          mode='min',
                          patience =50,
                          verbose = 1,
                          restore_best_weights = True)


# fit vae model
history = vae.fit(X_train,X_train,
            epochs=epochs,
            batch_size=batch_size,
            validation_data=(X_test, X_test),callbacks=callbacks)

训练流程可视化

python 复制代码
# loss curves
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('loss curves')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.show()

中间隐空间特征2D可视化

python 复制代码
# 2D plot of the classes in latent space
z_m, _, _ = encoder.predict(X_test,batch_size=batch_size)
plt.figure(figsize=(12, 10))
plt.scatter(z_m[:, 0], z_m[:, 1], c=X_test[:,0,0,0])
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.show()

数据合成

python 复制代码
# predicting on validation data
pred=vae.predict(X_test)

代码获取

附文章底部;

相关项目开发,问题咨询,欢迎交流沟通。

相关推荐
金井PRATHAMA4 小时前
描述逻辑(Description Logic)对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
Rock_yzh4 小时前
AI学习日记——参数的初始化
人工智能·python·深度学习·学习·机器学习
CiLerLinux5 小时前
第四十九章 ESP32S3 WiFi 路由实验
网络·人工智能·单片机·嵌入式硬件
七芒星20237 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
Learn Beyond Limits7 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
ACERT3337 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
C嘎嘎嵌入式开发8 小时前
(一) 机器学习之深度神经网络
人工智能·神经网络·dnn
Aaplloo8 小时前
【无标题】
人工智能·算法·机器学习
大模型任我行8 小时前
复旦:LLM隐式推理SIM-CoT
人工智能·语言模型·自然语言处理·论文笔记
tomlone8 小时前
AI大模型核心概念
人工智能