区间概率预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-时间序列区间概率预测+核密度估计

区间预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-核密度估计-回归时间序列区间预测

模型输出展示:

(图中是只设置了20次迭代的预测结果,宽度较宽,可自行修改迭代参数,获取更窄的预测区间)




注:可输出所有时间点的概率预测结果,数量较多,程序中为了随机采样了部分时间点绘制了预测结果

模型详细介绍:

python 复制代码
模型详细介绍如下:
1、	输入:多变量(多特征),输出:单变量(单特征),即多变量回归
2、	实现了:区间预测(采用分位数回归)+概率预测(采用核密度估计)
3、	绘图:区间预测结果+多个概率预测结果
4、	评价指标为:85%、90%、95%三个置信水平下的PICP、PINAW及CRPS值
5、	本程序采用数据为:光伏数据(包含辐照度、温度等多个变量),数据为附赠
6、	Python程序,基于tensorflow(会发包版本)
7、	数据可直接读取excel文件,更换简单,只保证在我的数据上能运行出较为理想结果(若需更好的结果自行调试),其他数据集效果自己调试。
8、程序中包含数据预处理部分,包含缺失值处理、归一化与反归一化等
9、本程序分位数个数设置为200个,这个可以自行调整。

模型用途:

python 复制代码
1、	光伏预测
2、	负荷预测
3、	风电预测等

模型原理介绍:

QR-CNN-BiLSTM模型是一个结合了Quantile Regression (QR),卷积神经网络 (CNN) 和双向长短期记忆网络 (BiLSTM) 的混合模型,它可以用于进行区间预测。区间预测不同于点预测,它提供了一个预测区间来表示未来值的不确定性,而不是给出一个具体的数值。这种模型特别适用于时间序列数据,可以捕捉数据的时间依赖性和非线性特征。除此之外,模型采用了核密度估计实现了概率预测。

模型实现流程:

1、数据预处理:

数据标准化:将时间序列数据标准化,以便模型更容易学习。

序列化:将时间序列数据转换为可供模型学习的序列样本。

缺失值填补:补充缺失值
2、 构建模型:

Quantile Regression

(QR):分位数回归用于估计条件分位数函数。在区间预测中,我们通常对特定的分位数(如5%和95%)感兴趣,这样可以构建一个90%的预测区间。

卷积神经网络 (CNN):CNN可以从序列数据中提取局部特征。在时间序列分析中,卷积层可以帮助模型捕捉到短期的趋势和模式。

在这里插入图片描述

双向长短期记忆网络

(BiLSTM):BiLSTM是一种特殊的RNN,它能够学习长期依赖关系。BiLSTM通过两个方向的LSTM层来处理数据,一个处理正向序列,另一个处理反向序列。这样可以同时捕捉到过去和未来的信息。

3、训练模型:

定义损失函数:在QR中,损失函数是基于分位数的,这意味着不同的分位数会有不同的损失函数。

优化器选择:选择一个适合的优化器,如Adam,来最小化损失函数。

训练过程:使用训练数据来训练模型,通过反向传播算法来更新模型的权重。
4、预测、评估:

使用训练好的模型进行预测,对于每个预测点,模型会输出多个分位数的预测值,形成预测区间。

还会使用核密度估计实现概率密度预测

评估模型的性能,可以通过计算预测区间覆盖实际值的比例、区间宽度等指标来进行。
5、超参数调整:

根据模型的性能,可能需要调整模型的超参数,如学习率、批大小、隐藏层的单元数等,以获得更好的预测效果。

程序源码(完整程序和数据,请私信博主获取,也可闲鱼搜索:阿鹿学术2,直接下单):

私信未及时回复可添加k---o---u---k--o---u:1493502034

python 复制代码
def create_cnn_bilstm_model(input_shape, cnn_filters, cnn_kernel_size, cnn_activation, max_pool_size,
                          lstm_units, dropout_rate, dense_units, dense_activation1, dense_activation2, learning_rate):
    model = Sequential()
    model.add(MaxPooling1D(pool_size=max_pool_size,padding='same'))
    model.add(Dense(units=dense_units, activation=dense_activation1))
    model.add(Dropout(dropout_rate))
    ......
    optimizer = Adam(learning_rate=learning_rate)
    model.compile(optimizer=optimizer, loss=loss)
    return model
相关推荐
985小水博一枚呀29 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
龙哥说跨境30 分钟前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
985小水博一枚呀34 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路43 分钟前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
小白学大数据1 小时前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin
flashman9111 小时前
python在word中插入图片
python·microsoft·自动化·word
菜鸟的人工智能之路1 小时前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
懒大王爱吃狼2 小时前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍
秃头佛爷3 小时前
Python学习大纲总结及注意事项
开发语言·python·学习
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别