神经网络汇聚层

文章目录

最大汇聚层

汇聚窗口从输入张量的左上角开始,从左往右、从上往下的在输入张量内滑动。在汇聚窗口到达的每个位置,它计算该窗口中输入子张量的最大值或平均值。计算最大值或平均值是取决于使用了最大汇聚层还是平均汇聚层。

可以设定一个任意大小的矩形汇聚窗口,并分别设定填充和步幅的高度和宽

python 复制代码
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))

平均汇聚层

python 复制代码
 nn.AvgPool2d(kernel_size=2, stride=2)

自适应平均池化层

python 复制代码
nn.AdaptiveAvgPool2d()

这个层可以生成任意大小的输出特征图,而不需要指定池化窗口的大小。

你只需要指定输出特征图的尺寸(output_size),自适应池化层会自动计算池化窗口的大小和步长,以适应输入特征图的尺寸。

这种方式使得模型能够更好地适应不同尺寸的输入,同时保持输出尺寸的一致性。

自适应池化层特别适用于需要固定尺寸输出的场景,例如在处理不同分辨率的图像时,或者在将特征图送入全连接层之前。

相关推荐
xixixi7777727 分钟前
零样本学习 (Zero-Shot Learning, ZSL)补充
人工智能·学习·安全·ai·零样本·模型训练·训练
olivesun881 小时前
AI的第一篇编码实践-如何用RAG和LLM
人工智能
龙山云仓1 小时前
No153:AI中国故事-对话毕昇——活字印刷与AI知识生成:模块化思想与信息革
大数据·人工智能·机器学习
狒狒热知识1 小时前
2026年软文营销发稿平台优选指南:聚焦178软文网解锁高效传播新路径
大数据·人工智能
十铭忘1 小时前
个人思考3——世界动作模型
人工智能·深度学习·计算机视觉
kkkkkkkkk_12011 小时前
【强化学习】09周博磊强化学习纲要学习笔记——第五课上
笔记·深度学习·学习·强化学习
rgb2gray1 小时前
优多元分层地理探测器模型(OMGD)研究
人工智能·算法·机器学习·回归·gwr
大猫子的技术日记1 小时前
2025 AI Agent 开发实战指南:从上下文工程到多智能体协作
前端·人工智能·bootstrap
Hoking1 小时前
milvus向量数据库介绍与部署(docker-compose)
人工智能·milvus·向量数据库